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Motivation 

In recent years, renewable energy sources have been installed in large numbers. Wind power in 
particular, a technology with very high potential, has become a significant source of energy in most 
power grids. For economical utilization as well as security of supply, it is essential to know the generation 
as accurately as possible in advance. However, wind power generation forecasting and scheduling 
remain very difficult tasks due to the uncertainty and stochastic behaviour of wind speed and other 
influence quantities. 
 

Methodoloy 

This work provides a novel, powerful tool for wind power forecasting based on neural expansion analysis 
(N-BEATS) for time series forecasting, a deep neural network approach [1]. This architecture is actually 
very similar to an unrolled LSTM, where the connections act like forget gates in LSTM to remove 
information that is not needed and passes the processed input to the next block, making it easier to 
produce more accurate forecasts [2]. At the same time, each block has a forecast output that is added 
up with subsequent forecasts in the block to provide a combined forecast. It is possible to stack hundreds 
of layers and residual blocks effectively using this principle, Figure 1. 
 

 
Figure 1: Basic structure of the proposed architecture and basic block design which leads to residual and forecast outputs. 

 

Additionally, a loss function is tailored to confront the issue of forecast bias. It is an asymmetric function, 
that penalises actual values that are above and below a certain quantile. It is an important loss function 
on its own; minimizing it produces quantile regression [3]. 
 

 
 
The architecture is further customised to deliver decomposed components such as trend and 
seasonality, yielding interpretable outputs. 
 

Results and conclusions 

The results are compared with established models, such as statistical and machine learning approaches 
as well as hybrid models [4], [5], [6], [7], using the real-world wind power data from 15 different European 
countries as input [8]. A sample forecast is given by Figure 2. 
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Figure 2: Randomly picked 15-minute forecast sample of Wind Power generation in Italy. 

 
The most remarkable result to emerge from the data is that N-BEATS outperforms all other used models 
in terms of accuracy with a MAPE of 3.98%, shown in Table 1. Generally, a MAPE below 4% is 
considered as major improvement [3]. 
 
 

 
Table 1: Overview of the forecasting metrics with emphasise on the N-BEATS results. 

 
The evidence in this work demonstrates that N-BEATS is a new, valuable and pure DL approach for 
STWPF. It an compete and outperform statistical and classical ML as well as hybrid models.  
 
Considerable progress has been made with regard to interpretability. One of the most common criticisms 
of deep learning methods for time series is that they are a black box and the inner processes are not 
intuitively interpretable [9]. Thus, it is not possible to understand how the result is obtained, in contrast 
to classical models such as ARIMA, the N-BEATS forecast is discomposed into distinct, human-
interpretable outputs. They can be used by utilities or system operators to facilitate their decision making 
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