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Motivation and central question 

Accurate photovoltaic (PV) forecasts are increasingly important to the integration of PV into grid, 
attracting a consistently high interest from grid operators, investors, politicians, and forecasters from 
both industry and academia. This leads to such a vast number of literatures focusing on enhancing PV 
forecast accuracy that it requires a scientific knowledge systemization.  
While there are already some survey papers (we found thirteen) summarizing findings from the literature, 
our work is the first to do statistical analysis of the individual errors reported in PV output forecast papers 
to systematically answer the question “What drives the accuracy of PV output forecasts?”. 

Methodologies 

Our paper analyses PV output forecasts’ performance from the literature focusing on the models’ errors, 
controlling for the effects of various factors such as the evaluation metric, the forecast horizon, the length 
of the testing data set, etc.  
To do that, we build a data base of models’ forecast errors from the existing literature. First, we collect 
papers on PV output forecasts using historical review papers and Google Scholar and get 180 papers 
in total. Next, we carry out preliminary examination and remove the papers forecasting solar irradiance 
(we focus exclusively on PV output (electricity) forecasts), and the papers of insufficient information, 
incorrect approach of PV forecasting, or incomparable error metric or forecast horizon. This leaves 66 
papers for final data collection and analysis. After processing the data, we have 1,136 observations with 
18 key features, covering a variety of models, regions, training and testing data sets etc. Our data base 
is large enough to control for various factors and produce robust, statistically significant results.  
We use an OLS regression to quantify the contribution of different factors and methodologies to the 
forecast quality. In addition, we use boxplots to further examine the data and to visualize the results. 

Results and Conclusions 

1. Inter-methodology comparison:  
1.1. Hybrid models are robustly superior to the others and outperform the conventional methods by 

0.84-2.68 percentage point (pp). 
1.2. Machine Learning performs much worse than expected. For example, its average NRMSE 

(normalized by averaged value) for day-ahead forecasts is 35% – compared with hybrid 
methods (15-17%) and conventional methods (19-20%). 

1.3. The performance gap between state-of-the-art and conventional methods is much less 
impressive than expected. The complexity-accuracy trade-off therefore favours the 
conventional models in the short and medium run. However, the complex models show much 
higher potential to enhance forecasts’ quality in the long run thanks to the development of new 
optimization techniques. 

2. Besides the model, other factors driving PV output forecasts’ accuracy include the forecast horizon, 
the test set length, the time publishing the models, and the data processing techniques. 
2.1. Longer forecast horizons have higher errors. For example, intra-day forecasts have errors 

being 1.34-5.80 pp higher than intra-hour forecasts. 
2.2. Models report lower errors for shorter test sets: an additional day in the test set increases the 

error by 0.008-0.018 pp. 
2.3. Data processing techniques significantly lower forecast errors by 0.85-4.45 pp. 
2.4. Models published one year later have the errors 0.14-3.07 pp lower. 
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 Dependent variable: average error value 
  
  

 All error metrics  
(1) 

All error metrics using  
test sets at least 1 year  

(2) 

NRMSE normalized by  
peak power or installed capacity 

(3) 

NMAE normalized by  
peak power or installed capacity 

(4) 

MAPE normalized by  
averaged value 

(5) 

NRMSE normalized by  
averaged value 

(6) 
 

Classical(1) -1.563 -1.683 3.853 -0.320  -0.445 

 (2.043) (2.167) (4.218) (0.807)  (3.909) 
       

Ensemble(1) 2.116 0.365 -0.473 -2.575  0.267 

 (2.631) (2.114) (5.198) (1.682)  (3.716) 
       

Hybrid(1) -3.321** -4.318*** -2.635 -2.469*** 5.232 -5.883* 

 (1.646) (1.653) (2.970) (0.679) (4.731) (3.492) 
       

Hybrid-Ensemble(1) -0.757 0.406 5.333  -3.548 -4.622 

 (3.059) (2.840) (8.697)  (7.804) (3.820) 
       

ML(1) -0.392 0.132 4.298 -2.120*** 7.666* -1.957 

 (1.585) (1.722) (2.866) (0.670) (4.345) (3.436) 
       

Persistence(1) 0.903 -1.883 6.569** 0.294 10.476** 1.005 

 (1.849) (2.040) (3.310) (0.744) (5.257) (4.175) 
       

Physical(1) 6.620** -0.835 5.908 -0.548  0.848 

 (3.297) (2.833) (8.607) (1.109)  (4.665) 
       

Test set length (days) 0.008*** 0.012*** 0.018*** 0.007*** -0.005 0.012*** 

 (0.001) (0.002) (0.003) (0.001) (0.005) (0.002) 
       

intra-day(2) 1.344* 2.360*** -1.266 2.733*** -0.148 5.799*** 

 (0.780) (0.844) (1.898) (0.227) (3.222) (1.626) 
       

day-ahead(2) 0.131 6.648*** -5.239*** 0.831*** -5.530* 14.373*** 

 (0.677) (0.927) (1.625) (0.275) (2.978) (2.126) 
       

Resolution (minutes) 0.008 -0.100*** 0.080** -0.055*** 0.292*** -0.266*** 

 (0.014) (0.016) (0.033) (0.007) (0.060) (0.056) 
       

Publishing Year -0.829*** -1.554*** -0.373 -0.134** -0.201 -3.068*** 

(of the papers) (0.133) (0.198) (0.292) (0.059) (0.467) (0.318) 
       

Complexity -0.398 -0.844** 2.107*** -0.847*** -4.447*** -3.433*** 

(number of techniques) (0.257) (0.379) (0.524) (0.108) (1.357) (0.960) 
       

Constant 1,680.585*** 3,144.080*** 752.050 278.803** 409.299 6,205.555*** 

 (267.513) (400.352) (590.081) (118.351) (942.393) (640.404) 
       

 

Observations 1,121 385 341 328 130 116 

R2 0.158 0.402 0.183 0.866 0.266 0.755 

Adjusted R2 0.149 0.381 0.151 0.861 0.204 0.724 

Residual Std. Error 9.065 (df = 1107) 5.715 (df = 371) 11.402 (df = 327) 1.541 (df = 315) 9.566 (df = 119) 6.057 (df = 102) 

F Statistic 16.029*** (df = 13; 1107) 19.199*** (df = 13; 371) 5.638*** (df = 13; 327) 170.015*** (df = 12; 315) 4.305*** (df = 10; 119) 24.192*** (df = 13; 102) 
 

Note: (1) Dummies of methodology, baseline: advanced classical models                                                                                                                                                                      
(2) Dummies of forecast horizon, baseline: intra-hour horizon                                                                                                                                                                                           *p<0.1; **p<0.05; ***p<0.01 

Table 1: Effects of different factors and methodologies on forecast errors 

 
Figure 1: Methodologies’ performance in day-ahead PV output forecasting 
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