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Abstract:  

Discount and hurdle rates are part of the input data in each state-of-the-art capacity expansion 

model, but these parameters do not receive adequate attention compared to the impact they 

have on model outputs. In this paper, our contribution is threefold. First, we analyse the impact 

of hurdle rates in a state-of-the-art bottom-up optimization model for the European electricity 

market. Second, we quantify the impacts caused by the choice of social discount rates on the 

investment mix. Finally, we illustrate a range of energy system development pathways 

resulting from assumptions on hurdle rates, social discount rates and three settings of demand, 

fuel price and CO2 price development.  

We show that hurdle rates significantly impact technology pathways. In particular, lower hurdle 

rates favour investment in renewable sources, hence leading to a system with lower carbon 

emissions intensity. Regarding the second objective, we highlight that technologies such as 

wind onshore experience a prominent decline in investments with increasing discount rate. 

The impacts caused by the choice of the discount and hurdle rates are illustratively compared 

with those caused by the choice of other uncertain input parameters, such as electricity 

demand, fuel and CO2 prices. 

Our findings indicate that careful consideration of these factors and understanding how they 

affect model outputs is of paramount importance for modelling exercises that aim for long-term 

policy planning. A key policy result of our study is that low discount rates fostered by the 

European Central Bank help to achieve current climate and energy targets. Our illustrative 

modelling example and conclusions are relevant for both energy modellers and policy makers 

with an interest in European energy markets. 
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1 Introduction 

Nowadays, energy research and policy consulting often rely on optimization models for energy 

markets. One of the pillars of energy systems optimization—capacity expansion models—aim 

to find the optimal energy infrastructure investments under a certain set of system parameters, 

e.g., electricity load, renewable energy sources (RES) infeed, carbon and fuel price 

developments, and policy regulation. Driven by the wide use of optimization for modern world 

energy- and climate challenges, academic literature has extensively investigated the effects of 

these parameters on energy models (Weber and Swider, 2004; Nagl et al., 2012; Schröder, 

2014; Steffen, 2020).  

However, discount rates and hurdle rates are two factors which do not receive adequate 

attention in the literature given their undeniable impact on model outputs and resulting policy 

takeaways.  

The existing literature on discount and hurdle rates focuses primarily on two aspects: the 

possible values that both parameters can take and the impact of varying these parameters at 

regional level.  

(Simoes et al., 2013) describe the JRC-EU-TIMES bottom-up linear optimization model. The 

authors outline that technology-specific values used for the hurdle rate are classified by sector 

or technology groups, while discount rates values are employed globally. (Hermelink and de 

Jager, 2015) discuss discrepancies in the discount rates in the context of PRIMES model, 

when modellers take into account the Energy Efficiency Directive. They set out to determine 

that countries preferring a “social” point of view on the discount rate choose a value of 3.3%, 

while member states with a “financial” point of view on the metric elect a value of 5.7%. 

(Kannan and Turton, 2012) use the TIMES model to assess Swiss nuclear policy. The authors 

implement two estimations for hurdle rates, while they vary the global discount rate across 

three estimations. In the assessment of the Indian electricity market, (Mallah and Bansal, 2011) 

conduct a sensitivity analysis on both parameters. They conclude that a higher hurdle rate 

changes the technology mix, as it becomes more complicated for efficient technologies to 

penetrate the market and lower discount rates favour hydro power technologies, while coal 

technologies are preferred with higher discount rates. A recent study by (García-Gusano et al., 

2016) investigated the European electricity generation mix and total system costs using 

different discount rates and two types of hurdle rate estimations. The authors also look into the 

Norwegian generation and electricity trade and find that lower social discount rates increase 

the contribution of renewable energy sources, while a higher discount rate leads to a system 

dominated by fossil plants. 

The literature discussed above is based on various parametrizations of DR and HR. We 

systematize the effect on energy system models caused by the choice in discount and hurdle 

rates, which are later reflected in policy takeaways. 

1.1 Discount and hurdle rates 

As the concepts of discounts and hurdle rates are central for this paper, it is worth making an 

exact definition for each concept. 

The Hurdle Rate (HR) refers to the lowest expected rate of return for investing into a 

technology, which is completed during the economic lifetime of the facility (Mellichamp, 2017). 
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Therefore, the change in this parameter is impacting the annuity calculation and has a stronger 

effect on capital intensive technologies such as nuclear and the vast majority of renewable 

technologies. As this parameter reflects the investor’s view of how assets are discounted in 

the future, the associated risk influences the value of the HR. 

According to Boudt (2021), a higher hurdle rate can be directly correlated to the willingness of 

banks to offer debt financing, which depends on the technology type considered in the 

investment. Change in producer and consumer preferences, as well as policy and market 

design can also alter the valuation of hurdle rate. Policy alterations such as support schemes 

for RES generation, limitations on carbon intensive facilities and requirements for shares of 

gas-fired power plants can lead to shifts in the profitability of such technologies and implicitly 

their risk evaluation. Other market design and temporal characteristics are generally seen as 

important driving factors in the evaluation of hurdle rate. Provided that the investment project 

has a time horizon of less than three years or it benefits from a capacity remuneration 

mechanism, investors should perceive a very low hurdle rate. In contrast, increasing the 

investment time horizon would expand the scale for the hurdle rate. 

Figure 1 depicts the main influencing factors of hurdle rates based on the risk type. It reveals 

that both systematic risk agents, which are intrinsic to the market and influence the cost of 

equity, as well as non-systematic risks i.e. the one which is associated to the type of technology 

are accounted in the computation of this metric. However, the resulting valuation can differ 

from the investor’s choice, since the latter depends on the implied risk attitude and financial 

constraints. 

The social Discount Rate (DR) indicates the time dependent decrease in the future cash flows 

of a social planner reported to the present time2 (Karp and Traeger, 2013). It reflects the 

willingness to trade-off the future economic benefits to the current time. From the modelling 

perspective, DR affects both the investments and the operational costs. 

A number of factors are known 

to affect the valuation of the 

discount rate. Policy related 

constituents, such as monetary 

policy conducted by central 

banks and tax policy related 

elements e.g. loans. Other 

macroeconomic components, 

such as gross domestic 

product, inflation, exchange 

rate may also modify under the 

course of project completion 

(Grzech, 2015). Considering 

the previously mentioned factors, it is likely that the discount factor might vary over the project 

                                                

2 Discount rates can be clustered into behavioural, social and real market-based discount rates. In this 

paper, we focus on the social discount rate as we look at the benefits on the energy market from a social 

standpoint. 

 

Figure 1: Determinants of investor hurdle rates. Adapted after: 
(Oxera Consulting Ltd, 2011) 
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planning and realization time and its fluctuation should be taken into account. To determine 

how various firms undergo their investment decisions, (Meier and Tarhan, 2011) conduct a 

study on how the asset related cash flows are estimated. The presented evidence suggests 

that hurdle rates estimated by investors surpass their weighted average cost of capital most of 

the time and firms usually do not update their HRs periodically, which can cause 

underinvestment or overinvestment. Authors also point out that investors are not successfully 

determining discount rates. 

1.2 Contribution 

Whereas the previous listed studies exercise different evaluations of these metrics, not enough 

attention is brought to the effects that discount and hurdle rates have on model outputs in 

combination with other uncertain parameters. 

In this paper, our contribution is three-fold. First, we analyze the impact of disregarding 

technology-specific hurdle rates in a state-of-the-art bottom-up optimization model for the 

European electricity market. This exercise accounts for the fact that hurdle rates for power 

generation capacity are different among technologies, as investment projects face different 

types of risks. Previous studies have not dealt with three risk-based estimates of whole project 

hurdle rates, even though certain technologies are either affected by shifts driven by market 

price volatility or by key factors such as project success rates. Secondly, we quantify the 

impacts caused by the choice of social discount rates on the shift in investment capacity. This 

exercise accounts for the fact the evaluation of the social discount rate and its consequences 

on technological preferences and policy goals is a challenging issue that is often left to the 

modeler. Finally, we illustrate a range of energy system development pathways resulting from 

assumptions on both the hurdle rates and social discount rates. 

We contribute to the policy 

discussion on the evaluation 

of these input parameters as 

instruments for reducing 

CO2 emissions. A number of 

factors related to both the 

capital costs and the 

marginal running costs are 

known to affect the 

investment volumes and 

type of technology to be 

invested in. 

We designate the main 

stream combinations, which 

lead to investments into low 

carbon intensive facilities, 

therefore contributing to a more decarbonized energy system. We perform this by means of a 

Sankey diagram as depicted in Figure 2, which establishes the volume of each technology 

based on the possible links between the nodes. In the first level, three viable discount rates 

are interlinked to two nodes i.e. represented by the low and high risk technology-based hurdle 

 

 

Figure 2: Using Sankey diagram to accentuate which parameter 
combination will lead to certain investments 
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rate. They in turn are connected to the three energy future scenarios, with distinct marginal 

costs. 

1.3 Broad Structure 

The remaining part of our paper proceeds as follows: chapter 2 describes the composition of 

our dynamic investment model along with the data and model equations; chapter 3 analyses 

the investment results for our different discount rates, hurdle rates and energy futures 

scenarios and at last the chapter 4 lays out the corresponding conclusions. 

2 Methodology 

2.1 The Investment Model 

The bottom-up investment optimization models is a well-established methodology in research 

focusing on the electricity markets (Nguyen, 2008; Weijde and Hobbs, 2012; Georgiou, 2016; 

Riepin, Möbius and Müsgens, 2021). The objective functions of these models are based on 

discounted cash-flows, making the choice of input parameters an essential one. We initiate 

our analysis with the computation of annuity, which encompasses the overnight construction 

costs i.e. the costs captured as if the entire payment would be spent by the vendor overnight.  

We optimize a greenfield cost-minimization model3 which determines investments into 

conventional and renewable technologies endogenously. The model is formulated as a linear 

program (LP) which minimizes the total system costs in partial equilibrium for the European 

electricity sector. For computing this problem, we use the General Algebraic Modeling System 

(GAMS) and the CPLEX solver. Starting from the basis year 2020, the model optimizes the 

investments in a dynamic manner with a five-year step until 2030.  

The hurdle rate accounts for the risk-based factor attributed to each technology, which is raised 

to the power of the technical lifetime t. 

𝐴𝑛𝑛𝑢𝑖𝑡𝑦 = 𝐻𝑅 ∙
𝐶𝑜𝑠𝑡𝑠𝑜𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡

(1 + 𝐻𝑅)𝑡
 (1) 

To discount the cash flows for 2025 and 2030 to the net present value of the reference year, 

the discount factor is calculated as in equation (2)4. 

𝐷𝐹 = 
1

(1 + 𝐷𝑅𝑦)
(𝑦−1) ∗ 𝑛

 (2) 

The geographical resolution consists of nineteen nodes, as the Balkan, Baltic and Iberian 

countries are integrated into a single node. The resulting investment model is complex and we 

run many scenarios for discount, hurdle rates and energy futures, so we have to tackle the 

computational complexity by temporal sampling.  

                                                

3 Storage and hydropower technologies are implemented exogenously using the existing capacity from 

our established energy future estimations. 

4 Where 𝑦 signifies the current year and 𝑛 the time step between years. 
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The methodology used for our representative hours’ series is presented in Annex A: Reducing 

computational complexity. 

2.2 Mathematical formulation 

Nomenclature 

Abbreviation Dimension Description 

Model sets   

i   Technology 

n   Node 

nn  Alias of n Node 

s   Scenarios for energy futures 

t   (Representative) hours 

y   Year  

conv(i)  Subset of i Conventional technology 

psp(i)  Subset of i Pump storage 

res(i)  Subset of i RES technology 

𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟(𝑖) Subset of i Water reservoir 

Model parameters   

𝐴𝐹  % Availability factor 

𝐶𝐴𝑃𝑖,𝑛,𝑦,𝑠
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

 MWel Existing capacity for pump storage and reservoir 

𝐶𝐴𝑃𝑖,𝑛
𝑚𝑎𝑥 MWel Maximum attainable capacity 

𝐶𝐶  tCO2/MWhth CO2 emission factor per fuel consumption 

𝐶𝐻𝑃 MWhel/h Minimum electricity generation by combined heat and 

power (CHP) plants to fulfil heat supply requirements 

𝐶𝑃𝐹 h Storage capacity-power factor 

𝐷𝐸𝑀𝐴𝑁𝐷  MWhel/h Electricity demand 

𝐷𝐹   Discount factor 

𝐻𝑅   Hurdle rates 

𝐼𝐶  €/MWel Annual investment costs 

𝑁𝑇𝐶 MWel Net transfer capacity 

𝑃𝐶𝑂2  €/ t CO2 CO2 price 

𝑃𝐹  % Hourly production factor for RES 

𝑆𝐻𝐸𝐷𝑚𝑎𝑥   % Maximum shedding factor  

𝑉𝐶  €/MWhel Variable generation costs for electricity  
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𝑉𝑂𝐿𝐴  €/MWhel Value of lost adequacy (the cost for load shedding) 

𝜂  % Efficiency of generation or storage technology 

Model variables   

𝑐𝑎𝑝  MWel Investments in electricity generation capacity 

𝑐ℎ𝑎𝑟𝑔𝑒  MWhel/h Pumping water into the pumped-storage plants (PSP) 

reservoir 

𝑓𝑙𝑜𝑤  MWhel/h Electricity flow between nodes 

𝑔  MWhel/h Electricity generation 

𝑜𝑐 MWel Operational costs 

𝑠ℎ𝑒𝑑  MWhel/h Load shedding for electricity 

𝑠𝑙  MWhel Storage level of PSP 

𝑠𝑢  MWel Start-up decision  

𝑡𝑐  € Total system costs 

Objective function  

Objective function (3) minimizes the total expected discounted capital and operating 
costs for the electricity sector: 

 

minTC =∑OCs
s

+ ∑ DFy ∙ capi,n,y,s ∙ ICi
i,n,y,s

 (3) 

𝑂𝐶𝑠 = ∑∙ 𝐷𝐹𝑦 ∙

(

 
 

∑(𝑔𝑖,𝑛,𝑡,𝑦,𝑠 ∙ 𝑉𝐶𝑖,𝑛,𝑡,𝑦)

𝑖,𝑛,𝑡

+∑(𝑠ℎ𝑒𝑑𝑛,𝑡,𝑦,𝑠 ∙ 𝑉𝑂𝐿𝐴𝑛)

𝑛,𝑡 )

 
 

𝑠,𝑦

 
(4) 

 

Corresponding system constraints 

Equation Domain Eq. 

As primary restriction, Eq. (5) establishes the market clearing under the condition that 
electricity demand in every node is met at each point in time: 

𝐷𝐸𝑀𝐴𝑁𝐷𝑛,𝑡,𝑦,𝑠 = ∑ 𝑔𝑐𝑜𝑛𝑣,𝑛,𝑡,𝑦,𝑠
𝑐𝑜𝑛𝑣

+∑𝑔𝑟𝑒𝑠,𝑛,𝑡,𝑦,𝑠
𝑟𝑒𝑠

+ 𝑠ℎ𝑒𝑑𝑛,𝑡,𝑦,𝑠

+∑(𝑓𝑙𝑜𝑤𝑛𝑛,𝑛,𝑡,𝑦,𝑠 − 𝑓𝑙𝑜𝑤𝑛,𝑛𝑛,𝑡,𝑦,𝑠)

𝑛𝑛

 
∀𝑛, 𝑡, 𝑦, 𝑠 (5) 

Eq. (6) ensures that the hourly load shedding is restricted for the specific demand: 

𝑠ℎ𝑒𝑑𝑛,𝑡,𝑦,𝑠 ≤ 𝐷𝐸𝑀𝐴𝑁𝐷𝑛,𝑡,𝑦,𝑠 ∙ 𝑆𝐻𝐸𝐷
𝑚𝑎𝑥 ∀𝑛, 𝑡, 𝑦, 𝑠 (6) 

Eq. (7)-(11) define the availability limitations for both the conventional and the renewable 
capacities. Since the model is designed on a time frame of 10 years, a yearly 
interdependency is required. Eq. (7) guarantees that the new generation capacity from the 
previous year is present in the subsequent year. 

Since our approach is a greenfield one, Eq. (8) restricts the conventional generation only to 
the newly invested capacity and the availability factor. Eq. (10) does the same for the 
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reservoir generation. The restriction (9) - analogous to the latter, but for RES technologies 
determines the periodical infeed, while taking into account the hourly production factor. Eq. 
(11) considers political or technical restrictions on investments in specific technologies (e.g. 
nuclear or coal phase-out): 

𝑐𝑎𝑝𝑖,𝑛,𝑦−1 ≤ 𝑐𝑎𝑝𝑖,𝑛,𝑦 ∀ 𝑖, 𝑛, 𝑦 (7) 

𝑔𝑐𝑜𝑛𝑣,𝑛,𝑡,𝑦,𝑠 ≤ 𝑐𝑎𝑝𝑐𝑜𝑛𝑣,𝑛,𝑦,𝑠 ∙ 𝐴𝐹𝑖,𝑛 ∀ 𝑛, 𝑡, 𝑦, 𝑠 (8) 

𝑔𝑟𝑒𝑠,𝑛,𝑡,𝑦,𝑠 ≤ 𝑐𝑎𝑝𝑟𝑒𝑠,𝑛,𝑦,𝑠 ∙ 𝑃𝐹𝑟𝑒𝑠,𝑡,𝑛 
∀ 𝑟𝑒𝑠 ∈ 𝑖, 

𝑛, 𝑡, 𝑦, 𝑠 
(9) 

𝑔𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑛,𝑡,𝑦,𝑠 ≤ 𝐶𝐴𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑛,𝑦,𝑠
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

∙ 𝐴𝐹𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑛 
∀ 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 
∈ 𝑖, 𝑛, 𝑡, 𝑦, 𝑠 

(10) 

𝑐𝑎𝑝𝑖,𝑛,𝑦,𝑠 ≤ 𝐶𝐴𝑃𝑖,𝑛
𝑚𝑎𝑥 ∀𝑖, 𝑛, 𝑦 (11) 

Eq. (12)–(14) outline the implementation of the storage systems. Eq. (12) delimitates the 

maximum storage level. Eq. (13) declares in which state the storage level is at the end of 

hour t. Eq. (14) defines the maximum charging capacity: 

𝑠𝑙𝑝𝑠𝑝,𝑛,𝑡,𝑦,𝑠 ≤ (𝐶𝐴𝑃𝑝𝑠𝑝,𝑛,𝑦,𝑠
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

+ 𝑐𝑎𝑝𝑝𝑠𝑝,𝑛,𝑦,𝑠) ∙ 𝐶𝑃𝐹 ∀𝑛, 𝑡, 𝑦, 𝑠 (12) 

𝑠𝑙𝑝𝑠𝑝,𝑛,𝑡,𝑦,𝑠 = 𝑠𝑙𝑝𝑠𝑝,𝑛,𝑡−1,𝑦,𝑠 − 𝑔𝑝𝑠𝑝,𝑛,𝑡,𝑦,𝑠 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑝𝑠𝑝,𝑛,𝑡,𝑦,𝑠 ∀𝑛, 𝑡, 𝑦, 𝑠 (13) 

𝑐ℎ𝑎𝑟𝑔𝑒𝑝𝑠𝑝,𝑛,𝑡,𝑦,𝑠 ≤ 𝐶𝐴𝑃𝑝𝑠𝑝,𝑛,𝑦,𝑠
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

+ 𝑐𝑎𝑝𝑝𝑠𝑝,𝑛,𝑦,𝑠 ∙ 𝐴𝐹𝑝𝑠𝑝,𝑛 ∀𝑛, 𝑡, 𝑦, 𝑠 (14) 

Eq. (15) defines an annual boundary for generation produced by reservoirs: 

∑𝑔𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑛,𝑡,𝑦,𝑠
𝑡

≤ 𝐶𝐴𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑛,𝑦,𝑠
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

∙ 𝐹𝐿𝐻 ∀𝑛, 𝑦, 𝑠 (15) 

Eq. (16) states that gas-fired power plants are restricted to produce a certain amount due to 

country-specific CHP requirements: 

𝐶𝐻𝑃𝑛,𝑡,𝑦 ≤∑𝑔𝑔𝑎𝑠,𝑛,𝑡,𝑦,𝑠
𝑔𝑎𝑠

        ∀𝑛, 𝑡, 𝑦, 𝑠 (16) 

Eq. (17) constrains cross-border electricity trading: 

𝑓𝑙𝑜𝑤𝑛,𝑛𝑛,𝑡,𝑦,𝑠 ≤ 𝑁𝑇𝐶𝑛,𝑛𝑛,𝑦 ∀𝑛, 𝑛𝑛, 𝑡, 𝑦, 𝑠 (17) 

2.3 Data 

Hurdle rates 

Data about technology-specific hurdle rates is limited. We opt for a risk-based analysis 

provided by (NERA, 2015), which lists projections for 2030. In this study, sub-categorical 

technologies, such as Open Cycle Gas Turbines (OCGT) and Combined Cycle Gas Turbines 

(CCGT) are assumed to face the same hurdle rate values, due to scarcity on corresponding 

data.  

Most studies of technology-specific hurdle rates have only been carried out for a technological 

niche or certain technology classes i.e. conventional, dispatchable or non-dispatchable 

renewable plants. (Oxera Consulting Ltd, 2011) undergoes a survey on low carbon generation 

technologies and identify that hurdle rates are extensively different between individual 

renewable utilities. (Simoes et al., 2013) provide hurdle rate estimates for coal and oil 
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technologies used in the TIMES Model and the templates EFDA-TIMES and ETSAP-TIAM 

contain a different hurdle rate estimate depending on the technology scale (Grohnheit, 2013). 

According to (BEIS, 2018), hurdle rates estimates for 2018 experience a major drop compared 

to 2015 values, when it is assumed that contracts for difference are available for most 

considered technologies, but it is not the case when technologies are employed on a merchant 

basis. 

The choice of our hurdle rate scenarios is based on (NERA, 2015), which incorporates 

systematic and idiosyncratic risk-based projections for 2030, either inherent to the investor or 

determined by market and policy, contingent on technology type. All projects face allocation 

risk, but features such as market price volatility constitutes a risk factor for conventional 

technologies. Policy risks might affect mostly carbon intensive utilities which are expected to 

phase-out i.e. generation fuelled by uranium and coal, or renewable technologies through 

change in subsidy scheme. Supply and demand circumstances as well as governmental 

actions can lead to jumps in both the carbon and fuel price, which attributes another risk for 

coal fired plants. 

Table 1: Input parameters for the hurdle rate scenarios  

Technology-specific hurdle 

rates 
Low risk Medium risk High risk 

Nuclear 10.5% 12.4% 17.4% 

Lignite 8.9% 10.2% 19.4% 

Hard Coal 8.9% 10.2% 19.4% 

Combined cycle gas turbine 8.0% 12.2% 15.3% 

Open cycle gas turbine 8.0% 12.2% 15.3% 

Pump storage hydro power 

plant 
8.4% 10.2% 12.0% 

Reservoir 8.4% 10.2% 12.0% 

Solar photovoltaic 6.9% 8.5% 13.4% 

Wind onshore 7.5% 8.7% 13.3% 

Wind offshore 9.3% 10.9% 14.2% 

Biomass 11.0% 11.9% 19.4% 

Discount rates 

A number of studies have postulated a range for discount rates. (Burgess and Zerbe, 2013) 

recommend of discount rate in the range of 6 to 8% for governmental projects, while (Kannan 

and Strachan, 2009) implement a value of 3% for their residential sector model. (Mallah and 

Bansal, 2011) vary the metric from 6.5% to 15% and (Simoes et al., 2013) consider the public 

sector system and imply an overall rate of 5% for their model. 
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Our range of discount rates has been broadened for the purpose of capturing the 

repercussions on the investment mix. We use uniform values across all technologies ranging 

from 3 to 15 %, as shown in Table 2. 

Table 2: Input parameters for the discount rate scenarios  

Discount 

rates 
3% 5% 7% 9% 11% 13% 15% 

Energy future scenarios 

The other input data in our model, such as the fuel costs, the carbon price and the electricity 

demand, are parametrized according to the scenarios developed by the European 

Transmission System Operator in the Ten Year Network Development Plan (TYNDP) report 

(ENTSO-E and ENTSOG, 2018). 

We include the European Commission core policy scenario (EUCO), the sustainable transition 

(ST) and the distributed generation scenario (DG) for 2030. For 2020 and 2025, the best 

estimate (BE) scenario is used. 

The EUCO scenario uses as basis the European Union reference scenario in the PRIMES 

model and is focuses on the realisation of climate and energy targets, as well as accomplishing 

a 30% energy efficiency aim by 2030. To sustain the implicit targets, high fuel prices are 

implemented for the carbon intensive technologies, 8.27 €2030/MWhth for brown coal and 15.47 

€2030/MWhth for hard coal, but the lowest carbon price out of the three scenarios, namely 27.0 

€2030/t CO2. 

A decentralised evolution of the energy system is envisioned for the DG scenario, which is 

concentrated on the end-user utilities. The storyline presumes that consumers will switch their 

appliances according to the smart time of use electricity tariffs along with using smart devices 

and dual fuel appliances. Moreover, the building sector benefits from a high share of 

renewables, especially photovoltaics (PV) and storage systems5. Overall, the scenario has the 

highest renewable systems penetration accompanied by the highest demand and a medium 

level carbon price of 50 €2030/t CO2. 

In the electricity sector of the ST scenario, hard coal and lignite capacities are shifted down by 

gas installations, as a means to reduce CO2 emissions. For the transportation sector, gas 

replaces some oil consumption for conventional fuels. These replacements cause the highest 

peak and total demand for natural gas utilities along with very high 84.3 €2030/t CO2. 

Other data 

To parametrize the greenfield pan European investment model for both the conventional and 

the renewable power plants, we use assumptions for two key inputs used in the calculation of 

annuity: overnight cost projections are taken from (Held et al., 2014) and the development of 

technical lifetime extension for RES facilities as projected by (Wirth, 2017; IRENA, 2019a) for 

solar PV, (Müsgens and Riepin, 2018) for wind offshore and (Ziegler et al., 2018; IRENA, 

2019b) for onshore wind assets. 

                                                

5 From the storage technologies portfolio, batteries have the highest share in the system. 
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Scenario correlation 

As considered in the introduction, the discount rate regards the preference of society and how 

costs and cash flows are discounted in the future. The outlook on hurdle rate is similar, but 

with respect to the investor i.e. investors have the same preference as society in general. In 

spite of this supposition, investors face risks which are directly correlated to the type of facility 

they are willing to invest in, therefore there is a mark-up between the risk-based hurdle rate 

and the social discount rate. It is important to note that our results will only depict the correlation 

of discount rates which are lower or equal with the scenario based hurdle rates. 

3 Results and discussion 

The modelling exercise conducted for this paper includes three degrees of freedom: a choice 

of the hurdle rate, a choice of the discount rate, and a certain way how other system 

parameters develop (energy future). To isolate the effects of both factors, we structure our 

results section into the following three headings. First, we illustrate how the choice of the 

technology-specific hurdle rates affects the key outputs of investment optimization model for 

electricity market; while fixing the value of a discount rate. Second, we illustrate how the choice 

of the discount rates affects the same model outputs; similarly fixing the value of a hurdle rate. 

Finally, we analyse the range of energy system development pathways that arise from possible 

combinations of the two factors. All three analyses are performed considering three energy 

futures, i.e., future developments of electricity demand, fuel and carbon prices, which are 

parametrized based on the three TYNDP scenarios for 2030. The investigation focuses on the 

European electricity generation mix and emission intensity only. 

3.1 The impact of hurdle rate 

In this section, we show how the choice of the technology-specific hurdle rates affects the key 

outputs of investment optimization model for electricity market. The key outputs include (i) 

investments in 

generation capacity, 

and (ii) carbon 

emission intensity of 

the investment mix. 

To isolate this effect, 

we fix the value of the 

discount rate to 5%. 

Figure 3 presents 

the model results for 

investments in gene-

ration capacity. The 

results show that 

increasing hurdle 

rates substantially 

penalizes the capital-

intensive technolo-

gies. The shift of investments is more remarkable for renewable energy sources than 

conventional technologies when a higher risk-based hurdle rate is applied. Thus, wind offshore 

 

Figure 3: Shifts of investment mix relative to low risk HR scenario, keeping 
DR constant at 5%. 

-80.00%

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

∆: HR low —› HR 
medium 

∆: HR low —› HR 
high

∆: HR low —› HR 
medium 

∆: HR low —› HR 
high

∆: HR low —› HR 
medium 

∆: HR low —› HR 
high

EUCO ST DG

In
ve

st
m

e
n

t 
sh

if
t 

[G
W

]

Hard Coal CCGT OCGT Wind Onshore Wind Offshore PV



12. Internationale Energiewirtschaftstagung an der TU Wien  IEWT 2021 

   

Seite 12 von 18 

undergoes the most prominent reduction of its share in the optimal investment mix – 26% in 

the EUCO, and up to 64% and 67% in the DG and ST energy futures, respectively. Solar PV 

experiences a drop up to 35% in the EUCO setting, with a smaller change in the other two 

energy futures. Increasing the hurdle rate also unambiguously reduces investment in wind 

onshore technology, but the effect is smaller than for wind offshore and photovoltaics.  

Investment in hard coal technology, on the contrary, increases with higher hurdle rates. The 

effect is of similar magnitude whether a medium risk or a high risk value is chosen – the 

investment raise by 9% in the EUCO scenario, and by 5% and 4% in the ST and DG, 

respectively.  

For gas-fired power plants, the effect is twofold. Investment in OCGT plants increases higher 

values of the HRs. The effect is the most notable in the ST setting, in which the investment 

capacity raises by 16%. The CCGT plants experience very little change in the investment mix 

though. Lignite fired power plants appear to be unaffected by the change in hurdle rate for 

these three settings.  

In Figure 4 we present the 

carbon emission intensity of 

the previously depicted 

investment mix.  

For all of TYNDP energy 

future projections, a lower 

hurdle rate results in a 

system with lower emission 

intensity. We use the 

carbon emission intensity of 

the HR high scenario as a 

reference level. Both ST 

and DG exhibit a similar 

emission reduction path 

with lower hurdle rate (ca. 10%-11%). This effect originates from the optimal technology mix 

for both scenarios, which include a high share of zero-emitting renewables. In the EUCO 

setting, a low hurdle rate causes a remarkable fall of the carbon emission intensity at ca. 27%. 

This is explained by the large RES shares in the system, but also the low amount of coal-fired 

power plants present in EUCO, as this setting has the highest fuel price for coal technologies. 

3.2 The impact of discount rate  

In this section, we show how the choice of the discount rates affects the key outputs of 

investment optimization model for electricity market. Similar to previous section, we narrow 

down our focus on investments in generation capacity and carbon emission intensity of the 

investment mix. To isolate the effect of discount rate, we fix the value of the hurdle rate to high 

risk technology-specific hurdle rate (see Table 1). 

Figure 5-Figure 7 depict the model results for investments in generation capacity for six 

discount rate values, in a range from 3% to 15%. The results show that the effect of discount 

rate on investment mix is highly heterogeneous across energy futures. 

 

Figure 4: Carbon emission intensity of the investment mix. 
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Figure 5: Shifts of investment 
mix in relative terms based on 
[DR = 3%] scenario in EUCO 
setting. 

Figure 6: Shifts of investment 
mix in relative terms based on 
[DR = 3%] scenario in ST 
setting. 

Figure 7: Shifts of investment 
mix in relative terms based on 
[DR = 3%] scenario in DG 
setting. 
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Gas-fired power plants are 

predominantly invested in 

the ST and in the EUCO 

scenario, as these present 

the lowest gas prices from 

the entire setting. In ST, 

they overshadow other 

technologies when the 

hurdle rate is low and the 

DR is 7% and more so in 

the EUCO scenario with 

high hurdle rate and high 

discount rate, namely 11%.  

Investments into hard coal 

are strongly related to a low 

hurdle rate and medium 

ranged discount rate in ST, 

but they also benefit from 

the lowest fuel prices in this 

setting. Lignite is the only technology which is not predominantly preferred in by any of the 

three-levelled parametrization. 

4 Conclusions 

This paper focuses on the particularly important assumptions for every investment optimization 

model for electricity markets—the social discount factors and the hurdle rates. We assess how 

the choice of these factors impacts the energy system development pathways. The modelling 

exercise is conducted for the generation capacity expansion model for Europe and considers 

the three possible energy futures based on TYNDP parametrization.  

Our results show that renewables are the most affected generation technology by the risk 

component of the hurdle rate. This effect is especially prominent for offshore wind and solar 

photovoltaic, which decrease up to 67% and 35%, respectively, if the high hurdle rate scenario 

is benchmarked with the low risk. The findings of this study suggest that lower hurdle rates 

facilitate larger shares of renewable technologies in the optimal investment mix. Conversely, 

higher hurdle rates increase the conventional technology quota in the system. These results 

add to the rapidly expanding field of energy system decarbonisation, as lower hurdle rates also 

facilitate lower carbon emissions intensity.  

A policy takeaway is that low discount rates fostered by the European Central Bank6 make 

climate and energy targets attainable. 

                                                

6 The institution responsible for the monetary policy of the European Union member states. 

 

 

Figure 8: Sankey diagram depicting the distribution of the 
investment flows for each technology 
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A modelling takeaway is that a choice of risk-based hurdle rate exerts substantial influence on 

the key outputs of the investment optimization models, such as the investment mix and the 

system’s carbon emission intensity. Our results illustrate that selecting a certain combination 

of discount and hurdle rate might lead to a system configuration which favours RES 

installations or to one that is mainly dominated by gas- and coal-fired technologies.  

Overall, our findings indicate that assumptions for discount and hurdle rates should be carefully 

considered for any modelling with empirical interest. Understanding how these parameters 

affect model outputs is of paramount importance for any modelling exercises that aim for long-

term policy planning. As most capacity expansion models introduce discount and hurdle rates 

exogenously, we advise that valuations of both metrics are taken under careful and justified 

consideration followed by sensitivity analysis. 

The study is limited by the lack of information on the behaviour of storage technologies and 

hydroelectric generators with regard to discount and hurdle rates, as these technologies were 

implemented exogenously. In spite of its limitations, the investigation certainly adds to our 

understanding of the effects that hurdle and discount rates have on the investments in 

conventional and renewable generating technologies. The issue of discount and hurdle rates 

is an intriguing one which could be usefully explored to assess multiple model outputs such as 

total system costs and trade in further research. 
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Annex A: Reducing computational complexity 

The resulting investment model is complex and we run many scenarios for discount and hurdle 

rates, therefore we tackle the 

computational complexity by 

temporal sampling. we use a 

reduced time series of 351 hours, 

by sampling the full time set every 

25th hour. The key factor is 

capturing seasonal fluctuations 

and the daily variations of the 

residual load. We analyse the 

difference in the minimum, 

maximum and standard deviation 

of the residual load between the 

full time series (8760 hours) and 

the reduced set. The hour with the 

minimum difference for the three 

metrics is chosen as the optimum series of representative hours. Figure 9 depicts the residual 

load in Germany for the first 500 hours of the year. The full time series is compared to the 

reduced time sets starting with hour 1, 11, 12 and 13.  

 

Figure 9: Residual load duration curve for the full time series 
and the selected reduced time series 


