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Abstract:  

The ongoing paradigm shift from centrally managed power grids to distributed Smart Grids 
necessitates accurate and robust Short-Term Load Forecasting capabilities. With the 
increasing deployment of smart meters, Machine Learning based techniques show promising 
results. However, extensive centralized data collection and processing leads to concerns with 
respect to data privacy and transmission bandwidth. In this paper, we provide a solution for 
developing a global Machine Learning model without centralized data aggregation. This 
Federated Learning approach trains the model by aggregating parameter updates received 
from each participating household. We show that our model reaches sufficient forecast 
accuracy and also provides data privacy and security for every user within the Federated 
Learning framework. 
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1 Introduction 
A carbon-free power sector is only possible with an increasing and reliable integration of 
Renewable Energy Resources (RESs) into the existing power grid [1]. However, this 
integration results in a growth of network management tasks for the power grid operator to 
handle the volatile behaviour of those RESs. To guarantee a stable and reliable power supply, 
accurate demand forecasting is mandatory. Particularly on low-voltage grid level and for Smart 
Grid (SG) development, load forecasting is an important tool to secure network stability since 
smoothing effects are not as influential as on higher level. For Short-Term Load Forecasting 
(STLF), models based on Machine Learning (ML) methods have shown promising results [2]. 
This ongoing success of Artificial Intelligence (AI) in general is driven by two main factors: the 
amount of data generated by businesses, governments, and private citizens is rapidly 
increasing and computer processors are getting faster and cheaper. However, the accuracy of 
AI models highly relies not only on the amount of available data but also on the quality. 
Therefore, STLF continues to be a problem with much room for further improvement [3]. Even 
though load consumption is highly household specific, there are many characteristics that 
overlap between households. For example, power consumption at night is usually lower than 
during the day, or the power consumption rises when it is cold outside. It is therefore 
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conceivable to develop a global forecasting model which is adaptable to load forecasting in 
multiple buildings. 

Traditionally, ML models are trained on gathered data which is aggregated on centralized 
servers. This requires a transfer of highly personal data to remote servers, e.g., high-resolution 
power consumption data in the context of SG development that immediately raises data 
security and privacy concerns – further enhanced by the General Data Protection Regulation 
(GDPR) of the European Union [4]. Additionally, as ML models are getting more complex a 
general practice is the distribution of the training process over various machines to master the 
computational complexity [19]. Certainly, such transactions violate the GDPR as it is not always 
transparent to household users what their data is used for. Beside the data privacy concerns, 
transferring data between clients and servers need sufficient bandwidth available for stable 
communication [8]. Therefore, we propose a Federated Learning (FL) approach for STLF with 
the following contributions: 

1. Analyses of households’ consumption behavior used for feature engineering and 
selecting a suitable model for the given problem. 

2. Development of a flexible FL pipeline for simulating an arbitrary number of households 
within a SG. 

3. Evaluation of the forecast accuracy on real-world data sets with respect to data privacy.  
4. Comparison between an improved global model and a local trained model. 

Furthermore, we show that by using a global model and fine tuning it for a particular household, 
the training time can be significantly reduced. The global model can be further improved with 
FL. 

The remaining paper is structured as follows. In Section 2, we give a brief overview of state-
of-the-art applications in STLF, especially with respect to FL. A detailed description of the 
problem formulation, the used data set, the various preprocessing steps as well as the 
development process from a single household model to a FL infrastructure is given in Section 
3. The evaluation of our proposed model is presented in Section 4, followed by a concluding 
summary and possible starting points for further research works as well as newly opened 
questions (Section 5). 

2 Related Work 
In this section, first we give an overview of the current state-of-the-art methods for STLF with 
focus on ML approaches, after that we describe some FL works and how they can tackle the 
data privacy problem in SG development. 

2.1 Short-Term Load Forecasting 

For the STLF problem at household level, ML models like neural networks are valid solutions 
due to their capability to handle complex patterns and non-linear relationships [5]. Various 
types of neural networks outperform typical time-series prediction models such as 
Autoregressive Integrated Moving Average (ARIMA) [6]. Particularly, the Long-Short Term 
Memory (LSTM) emerges as the benchmark network architecture [7][8]. In our previous work, 
we showed that combined learning methods like Random Forest (RF) together with weather 
information and further feature engineering provide promising forecast accuracy [2]. All 
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mentioned approaches assume that the training data is hold centralized. This assumption rises 
privacy concerns, since load data reveal sensitive information. To address this problem, a new 
FL paradigm, which is further described in the following, is proposed. 

2.2 Federated Learning 

The basic idea behind FL was first published by a developer team from Google in 2016 to 
reduce uplink communication costs [9]. Meanwhile, this concept is used in various applications 
and sectors [10]. In the context of SG development, FL is used to predict the energy demand 
of electric vehicles [11]. Furthermore, based on a reinforcement learning model, FL is able to 
manage local home energy management systems [12]. In [13], the authors propose a FL 
approach for load forecasting in combination with edge computing devices. They showed that 
the accuracy highly depends on the computation power of the edge computing device but 
reaches sufficient predictions. Similar results are provided by the authors in [14] for ultra-short 
load forecasting. 

Especially the later papers encouraged our work. Since the previous mentioned FL 
approaches for STLF are working with single value predictions, e.g., load forecasting for a 
whole day or next hour, the problem of predicting the next day’s load curve is still unsolved. 
So, in the following, we propose a combination of the suggested ML model for STLF with a FL 
approach with respect to data privacy and reduction of data transmission bandwidth. 

3 Methodology 
In the following, we give a formal description of the problem. The goal of FL is to learn a model 
with parameters 𝐖 ∈ ℝ!!×!", in which the training data is distributed over a set of clients — in 
this case single households ℋ. Contrary to the traditional approach with a centralized data 
aggregation and training process, within a FL framework every household trains its own model 
and sends only the parameters from its specific model (see Figure 1) to the server. There, the 
households' parameters are aggregated, e.g., averaged. After that, the global model is updated 
and distributed to the selected households. 

 
Figure 1: Difference between (a) centralized learning, where the data is aggregated on the server, and (b) federated 
learning, where the parameters are aggregated on the server. 
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This whole procedure is an iterative process. In every round 𝑡 ≥ 0, the parameter server 
distributes the current model 𝐖# to households ℎ ∈ ℋ$, where ℋ$ ⊂ ℋ is a randomly selected 
subset of size 𝑛. Through some training epochs, every household ℎ ∈ ℋ$ generates a 
household-specific, updated model 𝐖#

(&) and sends its update 𝐇#
(&) ≔𝐖#

(&) −𝐖#
	  back to the 

server, where the global update is computed by an incremented average as follows [15]: 

 𝐖#)* = 𝐖# +𝐇# , with		𝐇# ≔
1

|ℋ$|
8 𝐇#

(&)

&∈ℋ#

	 (1) 

In the following, we show how this FL approach is implemented for our task with a summary 
of the used data set and executed pre-processing steps. 

3.1 Data Set & Pre-Processing 

For our work, we used the HUE data set [16]. For 28 residential households in Vancouver, BC, 
this publicly available data set contains individual hourly energy consumption records, each 
representing roughly three years. In Figure 2(a) the date ranges for the households are 
displayed. It can be seen, that for 16 households (with IDs 3 − 15 and 18 − 20) consumption 
data is available for the same time window of approximately three years. For those households 
the daily average load profile is shown in Figure 2(b). 

 
Figure 2: Overview of the HUE data set with (a) covered date range per household and (b) daily average load 
profiles. 

The data coverage per household is between 97	% and 100	%. Since most ML models are not 
able to handle missing values in their input data, gaps with less than three hours are filled 
through linear interpolation. The remaining missing data points are filled by average values 
from the same hour for a given weekday within a specific month. Furthermore, categorical 
information, e.g., month, weekday, needs to be transformed to be interpreted correctly by ML 
models. The typical approach to keep dimensionality low, is to encode a value 𝑥 as a cyclic 
feature [2] composed of the sine and cosine components 
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 𝑥-.$ = sin C
2 × 𝜋 × 𝑥

𝑇 G 		and		𝑥/01 = cos C
2 × 𝜋 × 𝑥

𝑇 G	 (2) 

with 𝑇 ∈ {7, 12, 24} for weekday, month, and hour of day. Furthermore, we added weather 
information between the given date range (see Figure 2(a)) for the Vancouver, BC area. Values 
for temperature, relative humidity, and atmospheric pressure were taken from the World 
Weather Online API [17]. The columns of the resulting data set are summarized in Table 1. 

Table 1: Data set description after pre-processing steps. 

 
Completing the pre-processing, the numerical values are scaled by subtracting the respective 
mean and dividing by the standard deviation. This procedure leads to a final set of household 
specific data sets 𝒟 = P𝒟(&)	Q	ℎ ∈ ℋ}. 

3.2 Model Development 

Before explaining the FL, we describe the used ML model. First, we formalize the problem our 
model needs to solve, then we propose one concrete model for FL. Since we are interested in 
STLF, the model's prediction is a total of 24 energy consumption values for every hour of the 
following day. For the STLF problem, a special kind of Neural Network — the LSTM — is the 
state-of-the-art ML model. This network architecture is able to represent non-linearity and 
especially handle seasonality due to its internal self-loops that are used for information storage. 
There are five main elements within a LSTM: 1) input gate, 2) forget gate, 3) output gate, 4) 
cell, and 5) state gate [18]. For our model architecture, we use multiple LSTM layers (see 
Figure 3). This is recommended by [19] and also achieved the best performance in our tests. 
By adding an additional fully connected layer before the last output layer, we could further 
improve our model architecture. 

 
Figure 3: LSTM architecture used for our FL model. 

Like most other ML techniques, it requires a training and testing phase. Let 𝐗 = (𝑥*, … , 𝑥$)2 ∈
ℝ$ be a vector representing the input data of a particular day 𝑑 and household ℎ, where for 
our LSTM model 𝐗 contains the hourly data (see Table 1) of the seven days until 𝑑. Further let 
𝐘 = (𝑦*, … , 𝑦34)2 ∈ ℝ34 be the vector, which shows the actual load value for household ℎ for 
the 24 hours of the day following 𝑑. Then the training set, for household ℎ, is 𝒟56789

(&) =
{(𝐗*, 𝐘*), … , (𝐗:, 𝐘:)}, where the (𝐗. , 𝐘.) are the pairs of 𝐗- and 𝐘-vectors for every day 𝑑 in 
the considered time-period. 
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For every household ℎ, we train a local LSTM model as shown in Figure 3. For every day in 
the considered time-period, we have one training round, where the process updates weights 
𝐖#

(&) using the training data 𝒟56789
(&) . The update aims to minimize the Mean Squared Error 

(MSE) between the predictive values 𝐘Y and the actual values 𝐘, i.e., ∑ (y\. − y.)34
.;<

3, for the 
energy loads of the 24 hours of the following day. 

In the following, this LSTM architecture is also used for our FL approach. 

3.3 Federated Learning Infrastructure 

Our FL approach is an iterative process, which in every communication round tunes a global 
model by aggregating weight updates provided by the involved households. This process is 
detailed more specifically in the following Algorithm 1. 

 
For implementation, we chose the TensorFlow Federated Framework by Google’s TensorFlow 
[20] in combination with Keras for model development [21]. In every round 𝑡, a random subset 
of three households is selected from ℋ. These households receive the current global model 
𝐖# from the server and train their local model with their own data 𝒟56789

(&) . The resulting model 
updates are aggregated by the server based on the calculation in Equation 1. In the following 
Section 4, we specify the chosen parameters and show the model performance for various test 
scenarios. 

4 Evaluation 
The previously described FL framework is implemented in Python 3.6.9 with the help of 
TensorFlow 2.4.1. The model was trained on the Nvidia Geforce RTX 2080 graphic card. For 
our test setup, we selected 16 households from the HUE data set, that contain load data from 
the same period. The period covers three years from 2015 to 2018. We trained our global FL 
model for 2.500 epochs in total. For each training epoch, we simulated the availability of three 
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households. This means, we selected randomly three out of the 16 households in each training 
epoch for FL. This is to simulate that households join and leave the training network over time.  

For evaluation we use forward chaining since this approach is closest to reality. For this 
purpose, we used a new household from the HUE data set (ID 24) that was still unknown to 
the global model. We first evaluated the global model and a yet untrained model (with randomly 
initialized parameters) on the first month of the data set. For every following month, we updated 
both models using the respectively previous month. The evaluation results can be seen in 
Figure 4. 

 
Figure 4: Comparison of the Mean Squared Errors (MSEs) between a global and a local model. Both models are 
tested incrementally on every new month. 

It can be seen, that especially at the beginning the global model performs a lot better than a 
newly trained model. After some time, sufficient data is available, thus the new model also 
provides similarly good predictions. This shows, that with a global LSTM model trained by FL, 
the training period, until good predictions can be made, can be significantly shortened. For 
illustration, Figure 5 shows three days of 24 h predictions on the test household. 

 
Figure 5: The next 24 h predictions for the test household (ID 24), after one month of training. The global predictions 
are the forecasting values with the fine-tuned global model. The local predictions are based on a newly generated 
model. 

These results are generated by a fine-tuned global FL model and a newly trained local model 
on the first month for the test household. In Figure 5 it can be observed that the predictions of 
the fine-tuned FL model are closer to the actual load measurements than those of the newly 
trained local model. 
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5 Conclusions & Future Work 
In this paper, we showed how a centralized ML model can be trained for STLF with respect to 
data privacy and security (see Section 3). We selected a proper ML model and architecture 
(Section 2.1) and developed a framework based on the FL approach described in Section 2.2. 
Based on this FL pipeline, we trained a global forecasting model through 2.500 communication 
rounds in total, whereby in every round a subset of three randomly chosen households out of 
16 were used for the training process. Conclusively, we evaluated the accuracy of the 
developed global model with a new household (Section 4). We observed that within the first 
six months the global model reaches a significantly higher accuracy than the local one. This 
shows that the time for a local model development can be shortened until enough data is 
collected. In this paper, we demonstrated how FL can be used for STLF with respect to data 
privacy and furthermore for bypassing the data collection time for single households. 

For future work it will be interesting to test various ML models beside the proposed LSTM as 
a global FL model. During the development process, the high variance of load profiles between 
households countered the forecasting accuracy when the number of clients within the FL 
framework increased. Thus, we assume that a classification of the different households within 
a SG would lead to further forecasting accuracy by clustering similar households for the FL 
process. Additionally, an adaptive local fine-tuning composed of one or more chained local ML 
models combined with ongoing FL process is an interesting research field. 
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