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Kurzfassung:  

This paper provides a statistical analysis on historical Photovoltaic (PV) output forecast 

performance. A total of 180 papers on PV forecasts have been reviewed for data collection, 

focusing on the forecast errors, which generates a data base of 1136 observations with 21 

key features, covering a variety of models, regions, time sets, level of aggregation etc. This 

large data base allows harmonising context difference across papers and removing risks of 

bias from individual studies to come up with a global conclusion regarding “What drives the 

accuracy of the PV output forecasts”. Besides the choice of the methodology, the forecast 

horizon, the length of the out of sample test sets, the data processing techniques are among 

the key factors influencing the forecast error levels. 

Keywords: PV forecasting, survey paper, inter-model comparison, systematic literature 

review, statistical analysis 

HIGHLIGHTS 

• Out-of-sample test set length positively correlates with the forecast errors. An 

additional day in the test set increases the error by 0.007-0.026 percentage point 

(pp). The state-of-the-art methods perform more robustly to the change in test set 

lengths than the classical.  

• Long test sets (at least one year) generate more meaningful conclusions on PV 

output forecast assessment. Restricting the bias from the difference in test set 

lengths can double the explanation power of the OLS regression from 15% to 35%. 

• The possibility of “cherry picking” in reporting errors exists. One-day test sets have 

the average error value of 2.7% – around a quarter of that of all the other test sets 

(~10%). 

• The longer the forecast horizons are, the higher the forecast errors are. On average, 

the intra-day and day-ahead forecast errors are higher than the intra-hour by 3.45 pp 

and 6.12 pp respectively. The state-of-the-art methods have more stable 

performance when moving from intra-hour to day-ahead forecasts, implying their high 

potential in improving the long horizon forecasts. 

• PV output forecasts have a steady improvement. Models published one year later 

have the average errors that are 0.64-0.98 pp lower. The progress is more significant 

for the state-of-the-art than for the classical methods. 

• Data processing techniques contributes to enhancing the forecast accuracy. Each 

one additional technique reduces the average errors by 1.25-1.32 pp. The effect is 
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stronger for state-of-the-art methods, signalling the further improvement that can be 

made in the long run by this group of methodologies. 

• Among the data processing techniques, data normalization is the most effective, 

reducing the average error by 3.16 pp, followed by resampling technique (-2.88 pp) 

and the inclusion of numerical weather predictions (NPW) model’s output (-2.48 pp). 

• Hybrid, ensemble, and hybrid-ensemble models achieve the lowest forecast errors. 

Hybrid models are consistently superior to the others and outperform the classical 

methods by 3.41-3.93 pp. ML performs much worse than expected, having the 

normalized root mean square error (NRMSE_avg) for day-ahead forecasts increase 

from 17.5% to 35% when removing the key risks of bias in inter-model comparison. 

• The bias caused by context difference can lead to the overestimating of the 

superiority of the state-of-the-art methods. The complexity-accuracy trade-off 

therefore favours the classical models in the short and medium run. However, the 

complex models show much higher potential to enhance forecasts’ quality in the long 

run thanks to the development of new data processing techniques. The future of PV 

output forecasts is consequently driven by the state-of-the-art models. 

List of Abbreviations 

Abbreviations Meaning 

2D 2 Dimentional 

3D 3 Dimentional 

ANFIS Adaptive Neuro-Fuzzy 

ANN Artifical Neural Network  

AR Auto-Regressive 

ARIMA Auto-Regressive Integrated Moving Average 

ARIMAX Auto-Regressive Integrated Moving Average With Exogeneous Variables 

ARMA Auto-Regressive Moving Average 

ARMAX Auto-Regressive Moving Average With Exogeneous Variables 

ARX Auto-Regressive With Exogeneous Variables 

BPNN Back Propagation Neural Network 

CART Classification And Regression Tree  

CFNN Cascade-Forward Neural Network 

CLS Constrained Least Squares (CLS) Regression 

CNN Convolution Neural Network 

CSI Clear Sky Index 

CSLSTM Clear Sky Index - Long Short Term Memory 

CSM Clear Sky Model 

DCNN Deep Convolution Neural Network 

DL Deep Learning 

DNN Deep Neural Network  

ENN Elman Neural Network 

ETS Exponential Trend Smoothing 

FCN Fully Convolutional Network 

FCNN Fully Connected Neural Network 

FFNN Feed Forward Neural Network 

FNN Feed Forward Neural Network 

GA Genetic Algorithm 
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GRNN General Regression Nn 

IEA International Energy Agency 

LAD Least Absolute Deviation 

LOESS Locally-Weighted Regression 

LSTM Long Short Term Memory 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MARS Multivariate Adaptive Regression Spline 

MBE Mean Bias Error 

ML Multiple Linear Model 

MLP Multi-Layer Perceptron 

MW Megawatt 

NARX Non-Linear AR-Exogenous 

NMAE Normalized Mean Absolute Error 

NRMSE Normalized Root Mean Square Error 

NWP Numerical Weather Predictions 

NZE2050 Net Zero Emissions By 2050 

OLS Ordinary Least Squares  

pp Percentage point 

PSO Particle Swarm Optimization 

PV Photovoltaic 

RBFNN Radial Basis Function Neural Network 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

SARIMA  Seasonal Auto-Regressive Integrated Moving Average 

SD Stadard Deviation  

SE Standard Error 

SFLA Shuffled Frog Leaping Algorithm 

SVM Support Vector Machine 

TCM Time Correlation Modification 

WT Wavelet Transform 

 

1 Introduction 

We start this part explaining the importance of accurate PV output forecasts to the 

integration of PV power – the fastest growing energy source on the globe. We then show 

that there have been so many studies on enhancing the accuracy of PV output forecasts that 

a survey on the topic is required. Particularly, the question “What drives the accuracy of PV 

output forecasts?” is crucially important, which has been addressed by most historical 

reviews on PV output forecasts but remains to be answered concretely. This paper is the 

first to provide a statistical analysis on PV output forecasts’ errors to answer this question. 

Electricity generation from renewable energies is projected to overtake coal by 2025 and to 

provide up to 80% of the global electricity demand growth to 2030 (IEA, 2020). The use of 

renewable energies as the main supply of power is decisive to reaching the target of net 

zero emissions globally by 2050. Among many forms of renewable energies, solar energy is 

the most important and has become systematically cheaper than all other power sources in 

most countries (IEA, 2020). Estimates from the World Energy Outlook 2020 show an 

World#_CTVL0015fe8e03d3cda414eb0d3845ae84a4692
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increase of 13% per year in photovoltaic (PV) sector, which can supply one-third of the 

growth in the global electricity demand from 2020 to 2030. Consequently, the International 

Energy Agency refers to PV as the “new king” of electricity generation.  

Electricity generation from PV, which is often referred to as “PV output” in the literature, 

comes from the sun, using PV modules to convert solar irradiance to electricity. For this 

reason, PV output depends largely on solar irradiance and is vulnerable to the change in 

meteorological variables such as temperature, wind speed, cloud cover, atmospheric aerosol 

levels and humidity, which are by nature particularly stochastic (Raza et al., 2016). This 

leads to a high volatility in PV output, causing difficulty in managing and planning power 

plant operations and blocking new investment for fear of system instability. To integrate PV 

output into the global power supply, this variability and uncertainty must be dealt with.  

Having high quality PV output forecasts has emerged as a particularly efficient solution for 

this problem (Ahmed et al., 2020; Das et al., 2018; Pazikadin et al., 2020; Raza et al., 2016). 

The better PV forecasts are, the more PV can be integrated into the system and the better 

can power plant operations be planned, saving money e.g., on start-up costs, and the higher 

the reliability of grid operation (i.e., lower risk of network failure or less balancing power 

needed). Consequently, millions of USD per year are spent on forecasts, software tools and 

methods, and on their improvement. At the forefront of this commercial applications, 

academic researchers have published hundreds of papers on these issues, enabling further 

progress in this field. While this re-confirms the importance of the topic, it also makes 

keeping track of most important new advances and comparing the newest forecasts 

techniques to the existing work more challenging.  

This leads to a demand for systemizing the scientific knowledge with regard to: What drives 

the accuracy of PV output forecasts? A concrete and global answer to this question is 

important as it allows scholars to adapt their research agenda, and both investors and 

system planners to know more about the respective forecast error to expect.  

Indeed, 12 out of a total of 13 review papers on PV output forecasts that we could find2 

(Table 1) have aimed at answering the above question through summarising the findings 

from individual studies, discussing the pros and cons of different methodologies, or 

comparing models’ performance. However, these reviews have not considered the risks of 

bias that can be caused by the context difference among papers such as the error 

calculation formula, the length of the test sets…. This review approach therefore potentially 

contains bias and produces more qualitative rather than concrete conclusions.  

In the meanwhile, the risks of bias caused by individual studies in PV output forecast are 

high because the PV output forecast performance depends strongly on contextual factors ( 

(Ahmed et al., 2020; Blaga et al., 2019) and the forecasters rarely use identical data sets or 

standardised error report methods (Ahmed et al., 2020; Antonanzas et al., 2016; Yang et al., 

2018). Consequently, any conclusion made from reviewing individual papers necessarily 

requires harmonising context distinctions and removing risks of bias, which can be achieved 

through a transparent process of collecting relevant research, screening the quality of 

 
2 Papers collected from Google Scholar using keyword “Review on PV output forecasts”. 
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papers, extracting the secondary data base, and analysing the (possibly unbiased) data 

using statistical methods. We call this process a “statistical analysis”.  

Using statistical analysis to integrate findings from individual studies has enjoyed a surge in 

popularity in many disciplines such as clinical medicine, social policy, education, information 

systems, and software engineering (Brereton et al., 2007; Chavez Velasco et al., 2021) and 

has been suggested as a crucially important body of research as it allows researchers and 

decision-makers to rigorously synthesize the outcomes from historical studies in an objective 

and evidence-based manner (Borenstein et al., 2009).  

Surprisingly, there has been no statistical analysis for PV output forecasts historically. In 

fact, to allow this statistical analysis approach to generate concrete and global conclusions 

requires that the number of papers available for reviewing be so large that there are 

sufficient observations in different contexts for analysis. Otherwise, reviewers may end up 

having too few observations in each context to draw any conclusion. Fortunately, with the 

importance of the PV output forecasts, so much effort and progress has been made in this 

field so far that it now enables and requires a statistical analysis. This motivates us to start 

this paper and to give a concrete and global answer to the question of what factors can 

enhance the PV output forecasts’ accuracy. 

This paper contributes in the following ways: 

First, this paper is the first to build a data base of PV output forecasts’ errors on a large scale 

of 180 papers from 2007 until now using a well-defined and transparent process of collecting 

and screening the quality of relevant research. All the papers are read and only papers 

qualifying certain requirements such as sufficient information or appropriate approach of 

forecasting3 are included for data extraction and analysis. After processing the data, we 

have a data base of 1136 observations, with each observation being the average error 

reported by a specific model in a paper, featured by 21 variables including the time and 

place of the data sets, the forecast horizon and resolution, the error metrics and 

normalization methods, and other variables related to methodologies such as the type of 

model and data processing techniques… 

Second, this is also the first paper to provide a statistical analysis on PV output forecasts to 

identify the factors that can enhance the forecast quality and to compare the inter-model 

performance. Particularly, this is the first attempt to examine the claims made in historical 

literature reviews on PV output forecasts that remain to be confirmed using statistical 

analysis. In other words, this is the first “survey of surveys” on PV output forecasts.  

Finally, through the statistical analysis, the paper provides many findings that are important 

to the further progress of PV output forecasts:  

• Out-of-sample test set length positively correlates with the forecast errors.  

• Long test sets (at least one year) generate more meaningful conclusions on PV 

output forecast assessment.  

• The possibility of “cherry picking” in reporting errors exists.  

 
3 Details are explained in section 3.1.2. 

Lessons#_CTVL00166fb4ce8f5d64f75bd8eb4651c721840
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• The longer the forecast horizons are, the more difficult to have high forecast 

accuracy.  

• PV output forecasts have a steady improvement in accuracy throughout the time. 

• Data processing techniques contributes to enhancing the forecast accuracy, with the 

best candidates being the technique of data normalization, resampling, and the 

inclusion of NWP model’s output. 

• Hybrid, ensemble, and hybrid-ensemble models achieve the lowest forecast errors 

while ML performs much worse when removing the key risks of bias in inter-model 

comparison.  

• The superiority of the state-of-the-art methods can be overestimated if we do not 

consider the risks of bias caused by context difference. The complexity-accuracy 

trade-off therefore favours the classical models in the short and medium run. 

However, the complex models show much higher potential to enhance forecasts’ 

quality in the long run thanks to the development of new data processing techniques. 

The state-of-the-art are also more robust to the change in test set lengths and 

forecast horizons. The future of PV output forecasts is consequently driven by the 

state-of-the-art models. 

Besides, this paper indicates that carrying out this statistical analysis is costly, though 

necessary, and emphasizes that establishing a benchmark for assessing PV output forecast 

performance is the next step to save time and resources for future knowledge systemization. 

The structure of this paper is as follow: Section 2 discusses the historical reviews on PV 

output forecasts and other related works. Section 3 describes the methodology and the data 

base. Section 4 presents the data analysis and provides important implications. Section 5 

briefly discusses the benchmark for PV output forecast assessment, and section 6 

concludes the paper. 

2 Literature review 

In this part, we first briefly present the historical review works on PV output forecasts that we 

found and summarise scholars’ opinions on what factors drive the PV output forecasts’ 

accuracy. These opinions will be examined through the statistical analysis in the section 4. 

Then we discuss one specific work that was not on PV output forecasts but has an approach 

that is close to ours and how we depart from there. 

2.1 Historical review papers on PV output forecasts 

Using Google Scholar with the keyword “Review on PV output forecasts”, we found a total of 

13 review papers on PV output forecasts. Table 1 summarises the key points of these review 

papers. 
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Table 1: Historical reviews on PV output forecasts 

No Authors 
(Year) 

Summary 

1 Ahmed et al. 
(2020) 

A review on the short-term PV output forecasts and highly advanced methodologies 
such as hybrid models using the latest techniques. It suggests that factors such as 
time stamp and forecast horizon, and techniques of data processing, weather 
classification, and parameter optimization can influence the quality of the forecasts 
and should be taken into account when comparing models. 

2 El hendouzi and 
Bourouhou 
(2020) 

A review on short-term PV output forecasts that discusses the basic principles, 
standards, and different methodologies of PV output forecasting.  

3 Mellit et al. 
(2020) 

A complete and critical review on highly advanced methods for PV output forecasts, 
especially the recent development in machine learning (ML), deep learning (DL), and 
hybrid methods. 

4 Pazikadin et al. 
(2020)  

A review of 87 articles on both solar irradiance and PV output forecasts, focusing on 
artificial neural network (ANN)-based models only. It highlights the superiority of the 
ANN hybrid models and emphasizes the importance of data input quality and weather 
classification. 

5 Rajagukguk et 
al. (2020) 

A review of DL models for PV output forecasts and solar irradiance forecasts. It 
compares 3 individual deep learning models and one hybrid model using deep 
learning techniques and shows that the hybrid outperforms the 3 individuals. It also 
recommends papers using normalized errors to enable inter-model comparison. 

6 Akhter et al. 
(2019) 

A review on ML and hybrid methods for solar irradiance and PV output forecasts that 
suggests the superiority of ML-based hybrid models. 

7 Das et al. (2018) A review on the development in PV output forecasts and model optimization 
techniques. It suggests that ANN and support vector machine (SVM)-based models 
have very good and robust performance. 

8 Sobri et al. 
(2018) 

A review on PV output forecast methods that indicates the superiority of ANN and 
SVM-based models. It also suggests ensemble methods have much potential in 
enhancing the forecast accuracy. 

9 Yang et al. 
(2018) 

A review on both solar irradiance and PV output forecasts using text mining, focusing 
on the analysis of the features of models and predicting the trend in PV forecasting. 

10 Barbieri et al. 
(2017) 

A review on very short-term PV output forecasts with cloud modelling. It suggests that 
hybrid models combining physical with statistical models can enhance the forecast 
accuracy, especially when PV outputs have rapid fluctuations. 

11 Antonanzas et 
al. (2016) 

A review on PV output forecasts that suggests the dominance of ML-based models. 

12 Raza et al. 
(2016) 

A discussion of ML-based and classical methods for PV output forecasts that 
supports the use of ML models and data processing techniques. 

13 Mellit and 
Kalogirou (2008) 

The first review on ANN-based models for PV output forecasts that suggests a high 
potential of ML techniques in enhancing the forecast accuracy. 

Most of these review papers address the question of what factors driving the PV output 

forecast accuracy and agree that both the methodology and the empirical set-up influence 

the forecast accuracy (e.g., Ahmed et al. (2020), Pazikadin et al. (2020), Raza et al. (2016), 

Das et al. (2018), Mellit et al. (2020)). Following we summarise the key arguments 

suggested by scholars regarding the factors influencing the PV output forecast accuracy. 

First, the PV output forecast accuracy is negatively correlated with the length of the test set 

(Ahmed et al., 2020). A shorter test set usually means less fluctuation in weather conditions 

and thus higher forecast accuracy (e.g., forecasts made for one single season can be more 

accurate than made for the whole year of 4 different seasons). Furthermore, reporting errors 

on a small number of days possibly makes “cherry picking” easier, i.e., to focus on specific 

days when models achieve the lowest errors. Therefore, many scholars recommend that the 

test set be at least one year so that the models can show a robust and unbiased 

performance (Raza et al., 2016).  

Second, forecast horizons are negatively correlated with the forecast accuracy (Raza et al., 

2016). The forecast horizon measures the time that the forecast looks ahead (Das et al., 
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2018), which lies between the moment the forecast is made and the moment that the 

forecast is meant for4. Because of the stochastic nature of the meteorological variables that 

strongly influence the PV output, the longer the forecast horizons are, the more difficult for 

the forecasts to be precise. Forecast errors are therefore expected to increase with the 

forecast horizon length (Ahmed et al., 2020; Akhter et al., 2019). 

Third, all scholars also agree that huge progress has been made in reducing the PV output 

forecasts errors during the last decade (Ahmed et al., 2020; Blaga et al., 2019; Mellit et al., 

2020; Raza et al., 2016). This corresponds well to the increasing importance of PV energy in 

the global power supply. Therefore, the literature claims that the accuracy of PV output 

forecasts is positively correlated with time, that is, the later a paper is published, the lower 

the forecast errors (on average) should be. 

Fourth, in addition to the above factors, data processing techniques5 can significantly 

improve the quality of the forecasts (Ahmed et al., 2020; Akhter et al., 2019; Mellit et al., 

2020; Pazikadin et al., 2020; Raza et al., 2016). Particularly, cluster-based algorithms, 

wavelet transform (WT), and the use of numerical weather prediction (NWP) variables are 

assessed as the most efficient data processing techniques (Ahmed et al., 2020). 

Finally, comparing the performance of different methodologies6, scholars have been 

particularly optimistic about state-of-the-art methods such as ML and hybrid models in 

improving the PV output forecasts, agreeing that these models can utilize the advantages of 

both linear and non-linear techniques and therefore can achieve the best performance for all 

forecast horizons (Ahmed et al., 2020; Das et al., 2018; Leva et al., 2017; Pazikadin et al., 

2020; Rajagukguk et al., 2020; Raza et al., 2016). Therefore, despite the higher complexity 

and computational burden, many suggest that it is worth investing in complex models in the 

long run (Ahmed et al., 2020; Akhter et al., 2019).  

Interestingly, no solid conclusions have been made regarding these above opinions. 

Through the statistical analysis of the data of PV output forecast errors, we will examine 

these claims and quantify the effects of different factors on PV output forecast accuracy. 

 
4 So far there has been no official classification of forecast horizons (Raza et al. (2016); 

Sobri et al. (2018)). However, there are two key approaches of horizon classification 

according to Ahmed et al. (2020): (1) very short-term or ultra-short term (from seconds to 

less than 30 min), short-term (30 minutes to 6 hours), medium-term (6 to 24 hours) and long-

term (>24 hours); and (2) intra-hour or nowcasting (a few seconds to an hour), intra-day (1 to 

6 hours) and day ahead (>6 hours to several days). The second approach is specifically for 

PV output forecasts and this paper follows this classification. 

Note that forecast horizon is different from forecast resolution. Forecast resolution measures 

the amount of time between the individual forecasts within one horizon. For example, a 

forecast of day-ahead horizon and 1 hour resolution is the forecast that predicts the value for 

every hour the next day. 

5 The description of all data processing techniques that we observe from reviewed papers is 

presented in Table 2. 

6 How models are classified in this paper is presented in Appendix B. 
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2.2 Depart from a statistical analysis on solar irradiance forecasts 

To the best of our knowledge, Blaga et al. (2019)’s work is the closest to our approach, who 

focused exclusively on solar irradiance forecasts rather than PV output7. Blaga et al. collects 

data from 40 papers between 2007 and 2016 and analyses the performance of models in 

different forecast horizons using two key error metrics namely root mean square error 

(RMSE) and mean bias error (MBE) both normalized by average values of solar irradiance. 

At least from the perspective of our review on PV output forecasts, we see that there are 

some important points to be improved from Blaga et al.’s work that apply to any other 

statistical analysis on energy forecasting as follows:  

First, distinguishing clearly between daily and hourly forecasts is important as the former are 

much easier and combining them may thus distort results. Second, scholars should refrain 

from filling missing information, particularly the important features such as the error 

normalization method. Changing from one normalization method (e.g., installed capacity) to 

the other (e.g., average power value) can greatly change the level of the errors, therefore 

any assumption on such information can bias the results. Third and the most importantly, 

more factors should be taken into account when comparing the errors of models. For 

example, though many scholars suggest the correlation of forecast errors and the test set 

length, no review work in the past (including Blaga et al.’s work) has considered this factor 

when comparing models’ performance. 

In section 3, we illustrate how these improvements are implemented in our paper.  

3 Methodology and data 

In this part, we first illustrate the process of conducting the statistical analysis on PV output 

forecasts and then we give an overview of the data base that we extracted from the 

reviewed literature. 

3.1 Conducting the statistical analysis on PV output forecasts 

We conduct the statistical analysis in four steps. In the first place, we identify and collect the 

relevant research using Google Scholar. Then we carry out a preliminary examination on the 

quality of all the papers and remove or include papers for review based on well-defined 

requirements that will be explained below. Next, we extract the data and have processing 

 
7 To forecast PV power includes two basic approaches: the direct and indirect one. The 

direct approach forecasts PV power directly from historical data of PV power and is usually 

combined with meteorological parameters. The indirect approach first forecasts solar 

irradiance and then calculate PV power from the solar irradiance using specialized software 

such as TRNSYSM, PVFORM, and HOMER (Dalton et al. (2009). Solar irradiance forecasts 

are thus an important part of indirect PV forecasts and account for a large proportion of 

studies on PV power forecasts. Therefore, many scholars include both irradiance forecasts 

and PV output (electricity) forecasts in their review on PV power forecasts (e.g., Antonanzas 

et al. (2016); Yang et al. (2018); Pazikadin et al. (2020)). However, the forecasting of solar 

irradiance is only a step in the whole process of PV output indirect forecasting and therefore 

should not be identified as PV output forecasting. 

A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
Feasibility#_CTVL0017982e449dc644cf4b0d0ce468032129b
Review#_CTVL00162db402607ef43c3ab5663c867f9a527
Review#_CTVL00162db402607ef43c3ab5663c867f9a527
History#_CTVL001c37ce3ce2e3c40928062a57c12564e9a
Solar#_CTVL001baff854f5aa64554a64871e6373b937b
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steps as necessary. Finally, we analyse the data base using OLS regression and other data 

visualization techniques to answer the research question “What drives the accuracy of the 

PV output forecasts?”. The whole process is illustrated in the Figure 1. 

 

Figure 1: Conducting the statistical analysis on PV output forecasts 

3.1.1 Relevant research collection 

As discussed in the introduction, we focus our review on the PV output forecasts and would 

like to examine what factors are important to enhancing the forecast’s accuracy. To search 

for all available papers on PV output forecasts, we use Google Scholar with the keywords as 

follows: 

• General PV forecasts: combinations of [“PV forecast” or “PV output forecast” or “PV 

output prediction” or “PV power generation forecast” or “PV power generation 

prediction”] and [“intra-hour” or “hour-ahead” or “intra-day” or “day-ahead”]. 

• Classical methodologies: combinations of [keywords for General PV forecasts] and 

[“regression” or “autoregression” or “removing seasonality” or “detrending” or “AR(X)” 

or “ARMA(X)” or “ARIMA(X)” or “bootstrap”]. 

• ML: combinations of [keywords for General PV forecasts] and [“machine learning” or 

“artificial neural networks” or “ANN”]. 

• Hybrid methods: combinations of [keywords for General PV forecasts] and [“hybrid” 

or “ensemble” or “advanced”].  

Among the search results, we could collect a total of 180 papers on PV output forecasting 

published from 2007 until 2020.   

Research question: What drives the accuracy of PV output forecasts? 
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3.1.2 Preliminary examination  

In the second step, we read all 180 papers and conduct the quality check as follows: 

(i) Remove papers of insufficient information 

In the first place, we observe that there are many papers not providing sufficient or clear 

information. For example, some papers do not mention whether they are doing daily or 

hourly forecasts, and some others do not give information on forecast horizons. There are 

also many papers unclear about their calculation of the forecast errors.  

We therefore require the key information to be provided in the papers. Particularly, papers 

have to report the errors for PV output forecasts. Furthermore, the information of the forecast 

horizon, forecast resolution, the test set, and other information for inter-model comparison 

such as the error normalization and calculation method must be clearly explained. All the 

papers that do not provide sufficient information as required are excluded. 

(ii) Remove papers providing daily forecasts  

As discussed above, hourly forecasting should be analysed separately from daily 

forecasting. We also observe from the 180 papers that most of the studies focus on hourly or 

less than 1 hour resolution forecasts. In this paper, we therefore aim at examining the 

models that can provide no longer than 1 hour resolution forecasts and exclude all the 

others, including the daily forecasts.  

(iii) Keep only papers reporting (or providing information to calculate) normalized RMSE, 

mean absolute error (MAE) and mean absolute percentage error (MAPE)  

We found at least 18 types of metrics that have been used by scholars to measure the 

performance of a PV output forecast model. Among these, RMSE, MAE, and MAPE are the 

mostly chosen. To enable error metric comparison across models, the first condition is to 

have the same error metric, and the second condition is to have the error metrics 

normalized. Therefore, we took only the papers that report at least one of these 3 error 

metrics in normalized values, or in case they provide absolute error values, additional 

information to calculate normalized errors must be provided (e.g., installed capacity or peak 

power of the plant). 

Besides, we also observe that scholars can have different calculation approaches for a same 

error metric, especially regarding the normalization method of the errors. For example, the 

RMSE can usually be normalized by the measured value of the data, the average value, the 

maximum measured value, the installed capacity of the plant, or simply by normalizing the 

data set and calculating the errors from the normalized data. In many cases, scholars simply 

report normalized errors without defining their calculation mechanism or the reference 

quantity for error normalization. All the papers that report the error metrics but use the 

calculation approach different from the standardised8 or not clearly explain their calculation 

formula are also excluded. 

(iv) Keep only intra-hour, intra-day and day-ahead horizons9  

 
8 Details on the standardised formulas of error metrics are presented in Appendix C. 

9 See Table 2 for horizon classification 
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Examining the papers, we observe that the number of forecasts longer than two days ahead 

is too low to be included in the data base. Therefore, we keep only the papers providing 

forecasts for intra-hour, intra-day and day-ahead horizons. 

At the end of the preliminary examination, we have 66 papers left for data extraction10. 

3.1.3 Data extraction and processing 

The 66 papers are examined thoroughly for data extraction. For each observation that is the 

average error reported by a certain model in a paper, we collect the information for at least 

21 different features, which are summarised in Table 2.  

Then we carry out data processing steps such as harmonising the units (e.g., W, kW, MW), 

normalizing errors based on available information, and fixing the data format. At the end of 

this process, a data base of 1,136 observations is built for further analysis. 

3.1.4 Data analysis 

We first examine the effects of all factors of interest on the PV output forecasts’ accuracy by 

doing OLS regressions with the dependent variable being the average error of PV output 

forecast models (E) and the explanatory variables include the test set length (TL), the three 

dummy variables for forecast horizon including intra-hour, intra-day and day-ahead horizons 

(H), the publishing year of the paper (Y), the complexity of the model (C), the seven 

dummies of the type of the models (M), and the eleven dummies of data processing 

techniques (T). These explanatory variables are the key factors that are suggested by many 

scholars to influence the forecast accuracy, as discussed in section 2.1. By quantifying the 

effects of these key factors through the OLS regression, we can systematically survey the 

historical surveys on PV output forecasts. The regressions are represented by the following 

two equations: 

𝐸 = 𝛽0  + 𝛽1𝑇𝐿 + ∑ 𝛽𝑖+1𝐻𝑖

3

𝑖=1
+ 𝛽5𝑌 + 𝛽6𝐶 + ∑ 𝛽𝑗+6𝑀𝑗

7

𝑗=1
+ 𝜀 

(1) 

𝐸 = 𝛽0  +  𝛽1𝑇𝐿 + ∑ 𝛽𝑖+1𝐻𝑖

3

𝑖=1
+ 𝛽5𝑌 + ∑ 𝛽𝑗+5𝑇𝑗

11

𝑗=1
+ ∑ 𝛽𝑘+16𝑀𝑘

7

𝑘=1
+ 𝜀  (2) 

 
Equation (1) describes the main OLS regression that goes along the whole analysis of all 

factors of interest, with the left-hand side representing the dependent variable and the right-

hand side including the explanatory variables and the error term (ε). 𝛽 is the coefficient of 

the explanatory variable, which will be computed through the OLS regression and informs 

the effect of each explanatory variable on the forecast errors.  

This main regression is done first on the whole data base (regardless of the error metric) and 

then on this same whole data base but restricting only observations of test sets at least one 

year. Besides investigating the impacts of varied factors on error values, this is also to 

examine the importance of having a long test set as claimed by many scholars. Showing that 

the length of the test sets has an influence on the forecast error levels is particularly 

important, as this is the most obvious indication of the bias that exists in generalizing 

 
10 The list of 66 papers is presented in Appendix A 
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conclusions from individual papers without harmonising the context difference as discussed 

at the very beginning of this paper. The threshold of one year is used as it is suggested by 

many scholars to sufficiently test models’ robust performance (Raza et al., 2016). Then we 

also conduct regressions on subsets of classical and state-of-the-art models to examine the 

difference in the effects of the factors on different groups of methodologies, which will 

provide important implications for later inter-methodology comparison. 

Equation (2) describes a modified version of the main regression, which focuses on 

quantifying the effects of individual data processing techniques (rather than the number of 

techniques used) on the forecast accuracy. In this modified regression, the variable of 

complexity is therefore replaced by the variables of data processing techniques. The results 

of this regression reveal which technique is more efficient and contribute significantly to 

further improvement of PV output forecasts. 

For each (explanatory) variable, we also use boxplot and other data visualization methods to 

visualize its effects on PV output forecasts for different subsets of data, where the difference 

in context and thus the risks of bias are eliminated. This not only helps picture the 

conclusions, but it also makes the conclusions solid. 

3.2 Data description 

This part provides a brief description on our data base. Each data point is featured by 21 

statistical variables including the information of the publishing year of the papers where the 

data point is collected (Var. 1), the error values (Var. 2), 10 data processing techniques 

(Vars. 3-13), the length of the test sets (Var. 14), the forecast resolution (Var. 15), and the 

complexity of the model (Var. 16) and 5 categorical variables (Vars. 17-21) namely Country, 

Region, Methodology, Forecast Horizon, and Error Metric as described in the Table 2. 

On#_CTVL001b30f060dcc4c44519b284f2baac18167
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Table 2: Data description 

Statistical Variables 

No Vars Unit Description Obs. Mean SD Median Min Max Range Skew Kurtosis SE 

1 Publishing 

Year 

NA The year that the paper is published 1136 NA NA 2019 2007 2020 13.00 -1.30 0.47 0.08 

2 Error % The average error reported for the 

model in the paper 

1136 9.19 9.77 8.03 0.00 100.47 100.47 3.38 20.24 0.29 

3 Transformatio

n 

Times 

used (1 

if the 

techniq

ue is 

used in 

the 

model 

and 0 

otherwi

se) 

Use WT or any other techniques to 

transform or decompose data to 

remove spikes or high fluctuation in 

the data 

1136 0.08 0.28 0.00 0.00 1.00 1.00 3.00 7.03 0.01 

4 Normalization Bring variables of varied ranges and 

units to the same range of [-1,1] or 

[0,1] without unit for easy comparison 

and modelling 

1136 0.46 0.50 0.00 0.00 1.00 1.00 0.18 -1.97 0.01 

5 Outlier Use techniques to handle outliers 1136 0.01 0.07 0.00 0.00 1.00 1.00 13.63 184.01 0.00 

6 Cluster-based Use cluster-based techniques such as 

k-means to pre-process data 

1136 0.35 0.48 0.00 0.00 1.00 1.00 0.61 -1.63 0.01 

7 NWP-related Include NWP variables among inputs 

or use NWP to classify weather 

conditions before forecasting 

1136 0.37 0.48 0.00 0.00 1.00 1.00 0.54 -1.71 0.01 

8 CSI  Use CSI in data pre-processing  1136 0.13 0.34 0.00 0.00 1.00 1.00 2.17 2.72 0.01 

9 Spatial 

average 

Data pre-processing techniques to 

reduce fluctuations of forecast  

1136 0.01 0.09 0.00 0.00 1.00 1.00 10.50 108.41 0.00 

10 Resampling Resample the data to diverse the 

training sets 

1136 0.13 0.33 0.00 0.00 1.00 1.00 2.22 2.92 0.01 

11 Weather 

forecast 

Use weather forecast to classify 

weather before forecasting 

1136 0.00 0.06 0.00 0.00 1.00 1.00 16.74 278.51 0.00 

12 Regression Use regression to analyse data before 

forecasting 

1136 0.00 0.03 0.00 0.00 1.00 1.00 33.62 1129.01 0.00 

13 Dimension 

reconstruction 

Reconstruct dimensions of data (e.g., 

2D to 3D) 

1136 0.01 0.07 0.00 0.00 1.00 1.00 13.63 184.01 0.00 

14 Test set 

length 

Days The length of the data set used for 

testing the model and calculating the 

1136 214.45 235.60 90.00 1.00 730.00 729.00 1.11 0.05 6.99 
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error 

15 Resolution Minutes The time interval between the 

individual forecasts within one horizon 

1136 43.42 24.04 60.00 1.00 60.00 59.00 -0.79 -1.32 0.72 

16 Complexity NA Count the number of data processing 

techniques used in the model 

1136 1.55 1.33 1 0 4 4 0.64 -0.86 0.04 

Categorical Variables 

No Vars Description 

17 Country The country of the data set used for training and testing the model 

18 Region The region of the data set used for training and testing the model 

19 Methodology The classification of models (Appendix B for more detail) 

20 Forecast 

Horizon 

The time that the forecast looks ahead, i.e., between when the forecast is made and when the forecast is meant for. This paper classifies 

horizons into intra-hour or nowcasting (a few seconds to an hour), intra-day (1 to 6 hours) and day ahead (>6 hours to several days). 

21 Error metric The error metric reported by the paper, including the normalization methods (Average or measured values (_avg), Installed capacity or peak 

power (_installed), and Normalized Data (_norm)). 
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Figure 2: Data description 
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Figure 2 shows the distribution of data over 6 key factors. For each factor, the number of 

data points (the average error reported by a model in a paper) and models are counted.  

As for the location of the data, our data base covers 74 regions across 17 countries and 4 

continents. As can be seen from the panel for Country from Figure 2, the top 5 countries that 

cover most of the data points are the USA, India, Australia, China, and Italy. Overall, besides 

the USA and Australia, there are 9 Asian countries and 6 European countries. 

Moving to the Publishing Year of Papers, we see an exponential increment in the number of 

models and data for PV output forecasts throughout the time, corresponding to the dominant 

role of PV in the global power supply. If we then look at the data distribution based on 

Methodology (see Appendix B for details on how this paper classify models), we observe 

that the state-of-the-art methodologies such as ML and hybrid methods dominate with 71% 

of total number of models and 81% of all data points. Other complex models including 

ensemble and hybrid-ensemble are only recently proposed and make up a small proportion. 

However, we show later that these models perform particularly well, and the future of PV 

output forecasts will be driven by such complex models. 

The panel of Data Processing Techniques reveals which techniques are applied more 

frequently. As can be seen, the top candidates are data normalization, the inclusion of NWP 

variables, and cluster-based algorithms with 23%-30% of all observations for each 

technique, followed by clear sky index (9%), wavelet transformation (8%), and resampling 

(5%). For the other techniques, each accounts for less than 1% of all observations. 

The lowest two panels describe the data distribution by forecast horizon and error metric. 

The left panel shows that the number of data points is higher for day-ahead and intra-hour, 

which reflects the fact that more effort has been driven to these two horizons, especially day-

ahead forecasts with the highest number of models. And from the right panel, error metric 

divides the data base into 9 subsets corresponding to 3 error metrics and 3 error 

normalization methods. As can be seen, 89% of all data points concentrate on the top 5 

error metrics and the subsets using normalized data to calculate errors contain particularly 

low number of observations. Details on the formulas of the error metrics are presented in 

Appendix C. 

By now we have given an overview of the process of the statistical analysis on PV output 

forecasts. The next section discusses the results. 

4 Results – What drives the accuracy of PV output forecasts? 

Following we discuss each variable’s effect on the PV forecast errors, starting with the length 

of the test set, followed by the forecast horizon, the time publishing the model, the 

complexity of the model (and the role of different data processing techniques), and the type 

of model (or methodology). For each variable, we begin with its coefficient in the OLS 

regressions and further explore its effect using data visualization methods. 

The main regression (Equation (1))’s results are summarised in Table 3. As can be seen 

from this table, the dependent variable is the error value, and the explanatory variables 

include the test set length (days), the dummies of forecast horizons, the publishing year of 

the paper, the complexity of the model, and the dummies of methodologies. Column (1) and 



 

  

Seite 18 von 42 

(2) present the regression on the whole data base without any restriction and then restricting 

only observations of test sets at least one year. Column (3) and (4) compare the regression 

results between the classical and state-of-the-art methods.  

Table 3: Factors influencing the accuracy of PV output forecasts 

 
 Dependent variable: error values 
  
  

 Whole data base Test sets >= 1 year (long test sets) 

 All methodologies 

(1) 

All methodologies 

(2) 

Classical models 

(3) 

State-of-the-art 
models 

(4) 

Test set length (days) 0.008*** 0.010*** 0.026*** 0.007*** 

 (0.001) (0.002) (0.005) (0.002) 

Intra-day(1) 1.430* 3.445***  3.116*** 

 (0.747) (0.834)  (0.825) 

Day-ahead(1) 0.421 6.120*** 7.720*** 5.912*** 

 (0.652) (0.865) (2.371) (0.922) 

Publishing Year -0.832*** -0.788*** -0.641 -0.976*** 

 (0.111) (0.162) (0.440) (0.177) 

Complexity -0.340 -1.249*** 0.371 -1.321*** 

 (0.234) (0.379) (1.106) (0.407) 
     

Classical(2) -1.633 -0.906 0.784  

 (2.045) (2.264) (2.593)  
    

Ensemble(2) 1.840 0.923  
 

 (2.608) (2.132)  
    

Hybrid(2) -3.410** -3.934**  -4.899*** 

 (1.629) (1.667)  (1.547) 
     

Hybrid-Ensemble(2) -1.022 -0.568  -0.969 

 (3.029) (2.878)  (2.715) 

ML(2) -0.451 1.579  0.308 

 (1.571) (1.729)  (1.617) 
     

Physical(2) 6.696** -2.156 -0.385  
 (3.269) (2.866) (3.211) 
     

Constant 1,686.488*** 1,594.978*** 1,284.590 1,976.310*** 

 (224.071) (327.278) (887.429) (356.840) 
     

Observations 1,136 389 54 335 

R2 0.162 0.373 0.510 0.370 

Adjusted R2 0.153 0.353 0.436 0.355 

Residual Std. Error 8.991 (df = 1123) 5.792 (df = 376) 6.069 (df = 46) 5.652 (df = 326) 

F Statistic 18.057*** (df = 12; 1123) 18.631*** (df = 12; 376) 6.850*** (df = 7; 46) 23.957*** (df = 8; 326) 
 

Note: (1) Dummies of forecast horizon, baseline: intra-hour horizon 
(2) Dummies of methodology, baselines: column (1-3): Advanced classical models, column (4): Ensemble models                                                                                                                                                                                 
*p<0.1; **p<0.05; ***p<0.01 

Now let us discuss each variable’s effects on the PV forecast errors in detail. 

4.1 Test set length 

First let us discuss the effects of the test set length on the accuracy of PV output forecast 

models looking at its coefficient from the regression in Table 3. As can be seen, the 

coefficients are highly statistically significant and positive (0.007-0.026) for all cases, 

indicating a positive correlation of error values with the length of the test sets. More 
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interestingly, this correlation is much stronger for the classical methods than the state-of-the-

art, with each additional day in the test set leading to an error increase of 0.026 percentage 

point (pp) for the former and only 0.007 pp for the latter. 

Regarding the test set length variable, we also examine the importance of the long test sets 

and the “cherry picking” hypothesis as suggested by many scholars discussed in Section 

2.1. On Table 3, moving from column (1) (regression on the whole data base) to column (2) 

(regression on only the observations of test sets at least one year), we see that the 

coefficients of most variables have larger magnitudes and become more significant, with the 

explanation power of the variables (adjusted R2) increasing from 15% to 35%. This indicates 

that requiring the test sets to be at least one year allows the data base to generate more 

meaningful results, which supports the argument of many scholars that longer test sets can 

test the robust performance of models. 

The “cherry picking” hypothesis is verified by comparing the errors reported on one single 

day and the other test sets. As can be seen from Figure 3, the one single day test sets have 

a remarkably lower errors compared to the other test sets. Pulling all the error metrics, one-

day test sets have the average error value of 2.7%, which is around a quarter of that of all 

the other test sets (~10%). 

 

Figure 3: Error values with length of test sets 
Note: The “> 1 day” test sets have the average MAE and RMSE normalized by installed capacity or 
peak power (NMAE_installed and NRMSE_installed) 5-10 times higher than the “1 day” test sets. The 
gap is up to 641 times when considering the RMSE normalized by average or measured values 
(NRMSE_avg), with the “1 day” test sets having the average error of only 0.03%.  

The significant gap of errors between the one-day test sets and the others remains robust 

when we further remove the risks of bias caused by the methodology and forecast horizons. 

As can be seen from Figure 4, the one-day test sets achieve consistently lower errors than 

the other test sets for all groups of models and forecast horizons. This implies the possibility 

of “cherry picking” in reporting errors and emphasizes the necessity of having a long (and 

standardised if possible) test set in assessing models’ performance.  
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Figure 4: Error values with different lengths of test sets, grouped by methodologies (left panel) and 
forecast horizons (right panel) 

4.2 Forecast horizon 

The next variable is the forecast horizons. The coefficients of the dummies of the forecast 

horizons in Table 3 show that changing from intra-hour forecasts (baseline) to longer 

horizons such as intra-day and day-ahead increases the average errors remarkably. In the 

data restricting the bias caused by the test set length (column (2)), the intra-day and day-

ahead forecast errors are higher than the intra-hour by 3.45 pp and 6.12 pp respectively. 

Classical models seem more sensitive to the change in the forecast horizon than the state-

of-the-art methods, with the intra-hour–day-ahead error gap being 7.72 pp for the former 

compared with 5.91 pp for the later, implying the superiority of state-of-the-art methodologies 

in long horizon forecasts. 

Let us now further explore the effects of forecast horizons harmonising the other context 

difference.  

 

Figure 5: Error values with forecast horizons 
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Figure 5 compares the forecast errors between the forecast horizons in each group of 

methodologies and error metrics, using the data of long test sets (at least one year). The 

figure clearly confirms the positive correlation between the error and the length of the 

forecast horizons. Looking at the ML methods, for example, we see a remarkable increase in 

the values of NMAE_avg and NRMSE_avg when we move from intra-hour to intra-day and 

then to day-ahead forecasts.  

This part confirms the suggestions made by many scholars that the longer horizons are, the 

more difficult it is to have good accuracy of forecasts. This fact implies that more effort will 

be driven towards improving long horizon forecasts such as the day-ahead. Forecast horizon 

is indeed a very important factor deciding the relative performance of models and should be 

taken into account in all analysis of PV output forecasts.  

4.3 Time of publishing the papers 

As for the publishing year of papers, it shows a significantly negative correlation with the 

forecast errors. The regressions in Table 3 show that models published one year later have 

the average errors that are 0.64-0.98 pp lower (column (3) and (4)). The coefficient is highly 

statistically significant for state-of-the-art models while showing no significance for classical 

models, indicating a more consistent improvement in forecast quality of the state-of-the-art 

models compared with the classical ones, though the overall effect observed for all 

methodologies is negative. 

The overall improvement in the forecast accuracy is also reflected in Figure 6, which shows 

a huge success in lowering the errors of the PV output forecasts from 2007 to 2020. On 

average, there was a decrease of 2 pp annually, bringing the average error value from 35% 

in 2007 to less than 8% in 2020.  

 

Figure 6: PV output forecast progress 

We take a further step to examine the progress of PV output forecast accuracy taking into 

account the other risks of bias. As observed from Figure 7, all error metrics, methodologies 
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and forecast horizons show a downward trend in the error values, allowing a concrete 

conclusion on the forecast errors decreasing with time. 

 

Figure 7: PV output progress for different error metrics and methodologies (left panel) and forecast 
horizons (right panel) 

4.4 Complexity of models and the use of data processing techniques 

The statistical analysis of the data base proves that the complexity of the models, which 

counts the number of data processing techniques used by the models, is negatively 

correlated with the forecast errors, especially significant for the state-of-the-art 

methodologies. 

The regression presented in Table 3 shows that each one additional technique reduces the 

average errors by 1.25 pp for the pool of all models (column (2)) and by 1.32 pp for the 

state-of-the-art methods (column (4)). However, the complexity variable has no statistically 

significant effect on the group of classical methods. Figure 8 visualizes the effects of 

different level of model’s complexity on the average error in each error metric and 

methodology group.  

 

Figure 8: Error values with complexity of models for each error metric (left panel) and methodology 
(right panel) 
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As can be seen, models using 0-2 techniques have the average errors being 44.7% higher 

compared with those using 3-4 techniques. This gap can be up to 99% for state-of-the-art 

methods, while the pattern is not so clear for the classical models, indicating that data 

processing techniques have much stronger influence on state-of-the-art models (than the 

classical). 

In addition, we also examine the comparative efficiency of individual data processing 

techniques, using the modified version of the main regression (Equation (2)). Table 4 

presents the regression results, with each column reporting the effects of each data 

processing technique on the forecast errors, controlling for the variables of test set length, 

forecast horizon, publishing year of the model, types of models, and the effects of other data 

processing techniques. As can be seen, the technique of data normalization is the most 

effective, reducing the average error of the model by 3.16 pp, followed by resampling 

technique (-2.88 pp) and the inclusion of NWP model’s output (-2.48 pp). These are also 

among the most used techniques as discussed in Section 3.2 (Figure 2). More interestingly, 

although cluster-based and WT are also frequently used in data processing, these 

techniques do not show significant influence on the forecast accuracy. 

Our analysis on data processing techniques has not only confirmed the crucial importance of 

these techniques to the performance of PV output forecasts. More importanly, we show 

where these techniques can function the best and which ones are the most effective. These 

findings are essential for the further improvement of PV output forecast accuracy. 
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Table 4: Effects of data processing techniques on error values 

 
            

 Dependent variable: error value 

 
Cluster-based 

(1) 
NWP-related 

(2) 
Normalization 

(3) 
WT 
(4) 

Outlier 
(5) 

CSI 
(6) 

Spatial 
average 

(7) 

Resampling 
(8) 

Weather 
forecast (9) 

Regression 
(10) 

Dimension 
Reconstruction 

(11) 

Processing 0.939 -2.478* -3.162*** -0.977 -5.482 3.259*** 0.632 -2.877** -1.647 -5.667 -0.944 

technique (1.352) (1.297) (0.755) (1.227) (4.294) (1.144) (4.252) (1.205) (4.576) (9.007) (3.822) 

Test set 

length 
0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 

(days) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
            

Intra-day(1) 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 2.228*** 
 

(0.825) (0.825) (0.825) (0.825) (0.825) (0.825) (0.825) (0.825) (0.825) (0.825) (0.825) 
            

Day-ahead(1) 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.253 
 

(0.787) (0.787) (0.787) (0.787) (0.787) (0.787) (0.787) (0.787) (0.787) (0.787) (0.787) 
            

Publishing  -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** -0.698*** 

Year (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) 
            

Classical(2) -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 -2.148 
 

(2.046) (2.046) (2.046) (2.046) (2.046) (2.046) (2.046) (2.046) (2.046) (2.046) (2.046) 
            

Ensemble(2) 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 
 

(3.466) (3.466) (3.466) (3.466) (3.466) (3.466) (3.466) (3.466) (3.466) (3.466) (3.466) 
            

Hybrid(2) -3.534** -3.534** -3.534** -3.534** -3.534** -3.534** -3.534** -3.534** -3.534** -3.534** -3.534** 
 

(1.679) (1.679) (1.679) (1.679) (1.679) (1.679) (1.679) (1.679) (1.679) (1.679) (1.679) 
            

Hybrid- -0.923 -0.923 -0.923 -0.923 -0.923 -0.923 -0.923 -0.923 -0.923 -0.923 -0.923 

Ensemble(2) (3.298) (3.298) (3.298) (3.298) (3.298) (3.298) (3.298) (3.298) (3.298) (3.298) (3.298) 
            

ML(2) -0.390 -0.390 -0.390 -0.390 -0.390 -0.390 -0.390 -0.390 -0.390 -0.390 -0.390 
 

(1.650) (1.650) (1.650) (1.650) (1.650) (1.650) (1.650) (1.650) (1.650) (1.650) (1.650) 
            

Physical(2) 5.894* 5.894* 5.894* 5.894* 5.894* 5.894* 5.894* 5.894* 5.894* 5.894* 5.894* 
 

(3.297) (3.297) (3.297) (3.297) (3.297) (3.297) (3.297) (3.297) (3.297) (3.297) (3.297) 
            

Constant 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 1,418.008*** 
 

(270.382) (270.382) (270.382) (270.382) (270.382) (270.382) (270.382) (270.382) (270.382) (270.382) (270.382) 
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Observations 1,136 1,136 1,136 1,136 1,136 1,136 1,136 1,136 1,136 1,136 1,136 

R2 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 

Adjusted R2 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 

Residual Std. 
Error 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 
1113) 

8.957 (df = 1113) 

F Statistic 10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

10.766*** (df = 
22; 1113) 

 

Note: (1) Dummies of forecast horizon, baseline: intra-hour horizon 
(2) Dummies of methodology, baseline: Advanced classical models 
*p<0.1; **p<0.05; ***p<0.01 
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4.5 Type of models - Which methodology is superior? 

So far, we have discussed the effects of four important variables on the PV output forecast 

errors. In this part, we study the role of the most important factor – the type of models or the 

methodology.  

First let us get back to the regression in Table 3. The coefficients of methodology dummies 

show that hybrid methods consistently achieve significantly lower errors than the other 

models, reducing the average errors by from 3.41-3.93 pp compared to the advanced 

classical methods (column (1)) and by 4.90 pp compared to the ensemble models (column 

(4)). The other methodologies do not show statistically significant influence on error values 

for almost all the cases. Although no clear rank is made for all types of models, the 

regression results indicate the dominant position of the hybrid models in PV output forecasts. 

We further explore the inter-methodology comparison using boxplot method. Figure 9 

compares models’ errors using different error metrics, with the left panel presenting the 

whole data base and the right one restricting the bias from test set length by keeping only at 

least one year test sets. Interestingly, the findings from the left panel reflect the opinions and 

summary of many historical review papers on PV output forecast models’ performance, while 

the right panel examines these opinions more critically and unbiasedly. 

On the left panel, the state-of-the-art methodologies including the hybrid, ensemble, hybrid-

ensemble, and ML methods are the best candidates, though ML’s performance is varied with 

a large number of outliers and a large gap between the best and the worst forecasts. 

Particularly, complex models, i.e., the hybrid, ensemble, and hybrid-ensemble models, 

outperform the individual ones substantially. Take day-ahead forecasts as an example, 

hybrid-ensemble methods report NRMSE_avg 32%-40% lower, and ensemble methods 

report NRMSE_installed 57%-72% lower than the individual models. These results support 

the arguments for the superiority of the state-of-the-art models. 

However, the error gap above between the complex and individual models is much lower 

when we look at the right panel of Figure 9. Focusing on the day ahead forecasts (as the 

other two horizons are left with too few observations when keeping only long test sets), we 

see that even though the hybrid, ensemble and hybrid-ensemble methods still achieve the 

lowest average error values for all error metrics, these models achieve the errors that are 

9%-24% lower than that of the individual methods instead of up to 72% as observed on the 

left side. This indicates that comparing models’ performance without considering the bias 

effects of other factors (e.g., the test set length) can lead to misleading conclusions, and 

particularly in this case, can overestimate the achievement of complex models.  

The bias is also observed for the assessment of ML models. While ML technique has almost 

equal average errors to the other state-of-the-art methods on the left panel of Figure 9, its 

comparative performance is significantly lower on the right panel when restricting the bias of 

test set length. For example, ML’s average NRMSE_avg for day-ahead forecasts on the left 

panel is 17.5%, which is close to the performance of hybrid-ensemble models (12%). 

However, the same error metric increases to 35% for ML models on the right panel, which 

more than doubles that of any complex methods and is 67%-77% higher than simple and 

advanced classical methods. In many cases, ML can show very bad performance, even 

when compared with the persistence models.  
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Figure 9: Methodologies’ comparative performance using the data base (left panels) and restricted 
data set (right panels) 

Therefore, considering the computational burden of the state-of-the-art methods, classical 

methods can be a better choice to balance the accuracy and the costs for the forecasts in the 

short and medium term. In the long term, however, we show below that it is worth investing in 

state-of-the-art methodologies to further improve the PV output forecasts. 

Intra hour forecasts Intra hour forecasts 

Day ahead forecasts 

Intra day forecasts Intra day forecasts 

Day ahead forecasts 
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Indeed, Figure 10 compares the progress of these two groups of methodologies, using the 

average error value (the left graph) and the minimum error value (the right graph). From the 

left graph, we see that although the classical methods beat the state-of-the-art at some 

points, the overall progress made in the state-of-the-art group is much larger, with an annual 

decrease of 3.94 pp during the last 10 years, compared with 0.94 pp for classical methods. 

On the right graph, we show that there is a large gap in the minimum error value that can be 

achieved by state-of-the-art methods compared to the classical, indicating much potential of 

state-of-the-art methods in reducing the forecast errors. 

 

Figure 10: A comparison of classical and state-of-the-art models' progress 

Our analysis in section 4.4 of the stronger influence of data processing techniques on state-

of-the-art models than on the classical can partially explain for the higher potential of the 

state-of-the-art methods. Though being less dependent on extra techniques makes the 

classical models’ performance more stable, it also means less likelihood to have leaping 

improvements. Considering increasing effort driven towards improving the data processing 

and optimization techniques in the past years, the state-of-the-art methods have high 

potential to further enhance the forecast accuracy in the long run.  

So far, the analysis of the data allows us to safely confirm the superiority of the complex 

models such as the hybrid, ensemble, and hybrid-ensemble methods, though much less 

impressive when removing some important sources of bias. ML models, though assessed as 

performing well by many scholars, do not show a robustly good performance. However, the 

state-of-the-art methodologies have more potential to further improve forecast quality in the 

long run compared with the classical methods.  

Noteworthily, methodology comparison requires a data base that is large enough to allow 

harmonising different features and still leave enough observations for comparison. This 

requires huge effort to collect, process and analyse the data. In the meanwhile, new PV 

forecast models are proposed every day, which requires a continuous update of the data 

base and thus costs more resources. A benchmark is therefore the most efficient and easiest 

way to systematize knowledge and compare models. This leads us to the final section. 

Average Error Value Minimum Error Value 
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5 A benchmark for PV output forecast assessment 

An established benchmark for PV output forecasts has numerous advantages. First, a 

benchmark ensures that all models are tested in an identical transparent context and use the 

same error report methods, which allows direct comparison of error values among models. 

Second, a benchmark is also an open space that benefits both scholars and investors. As for 

scholars, a benchmark puts them on a transparent playground and diminishes all context 

preferences and the risks of bias, which motivates more competition and thus faster 

progress. Furthermore, the scholars can easily and quickly track their ranks among the 

community, which is pivotally important for further improvements in PV output forecasts. For 

investors, having the plant’s data as among the standardised data sets used for the 

benchmark allows them to use the resources from scholars all over the world, who can 

contribute to enhancing the forecast accuracy for the investors’ PV plant “for free”.  More 

importantly, a benchmark is a dynamic and open space, where models’ performance and 

rankings are updated continuously as new models are tested without demanding any 

additional effort to collect and update data. The participation of a variety of methodologies 

and data sets also facilitates the transfer learning in PV output forecast domain and 

contributes enormously to the accuracy improvement. 

Therefore, we suggest the following steps to establish a benchmark:  

(i) Have a standardised suit of evaluation metrics with formal requirements and 

instructions for the error reporting process. 

As discussed above, there are a large number of options to report the forecast errors, which 

means fewer data points in each error metric group and causes difficulty in comparing 

models. Therefore, the evaluation metrics must be standardised. 

Among the error metrics, we recommend MAE and RMSE to assess the forecast quality for 

both long and short terms. MAE, with its focus on mean error values, is less sensitive to 

variability of the data set and is more suitable to long-term forecasts for management and 

planning purposes. As for RMSE, the squared values make it more sensitive to outliers and 

spikes in data (e.g., severe solar ramps), therefore satisfying the key requirement in short 

term PV forecasts – capturing the model’s forecast accuracy in extreme events (Blaga et al., 

2019). 

Besides, as many scholars also attempted to suggest new approaches of evaluating the 

models’ performance, arguing that one single metric cannot represent the whole model (e.g., 

Marquez and Coimbra (2013)), in addition to the above suggested error metrics, the 

benchmark could periodically include more new metrics to the standardised suit to promote 

the fair assessment.  

More importantly, we also mention above that scholar can have different calculation 

approaches for a same error metric, or simply report normalized errors without defining their 

calculation mechanism or the reference quantity for error normalization. To solve this 

problem, formal instructions and requirements should be made on the model testing progress 

to ensure the transparency in model assessment. 

(ii) Have a bank of standardised data sets for training and testing models.  

A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
A#_CTVL00148423128c0cc41aa8ed9fb3180d8c2f0
Proposed#_CTVL001ab8725f66dcc4b31bf3d3d372f893992
Proposed#_CTVL001ab8725f66dcc4b31bf3d3d372f893992
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The next step would be to have standardised data sets to eliminate all context difference in 

models training and testing. Any investors or scholars who would like to contribute to the 

bank of data sets can send their data sets to the benchmark coordinator to be examined and 

standardised. In this way, the bank of data sets will always be kept updated. 

(iii) Have an open space for the benchmark. 

Finally, a benchmark should be established as an open space, preferably by leaders of both 

scholar and industry community, so that it can be accepted, widely used, and contributed to 

by many scholars, which is the prerequisite for the success of the benchmark. The 

benchmark can be initiated as competitions in the beginning to attract scholars to participate 

in. In the long run, quarterly or annual rankings can be made for the models, which not only 

informs all stakeholders about the progress in PV output forecast, but also attracts more 

participation from scholars and industries, leading to the further development of the 

benchmark – the systematic data base of PV output forecast assessment. 

6 Conclusion 

Accurate photovoltaic (PV) forecasts are increasingly important to the integration of PV into 

grid, attracting a consistently high interest from grid operators, investors, politicians, and 

forecasters from both industry and academia. This leads to such a vast number of literatures 

focusing on enhancing PV forecast accuracy that it requires a scientific knowledge 

systemization.  

While there are already some survey papers summarizing findings from the literature, our 

work is the first statistical analysis on PV output forecasts to concretely answer the question 

“What drives the accuracy of PV output forecasts?”. To do that, we examine all the literature 

on PV output forecasts that we could find, assess their quality, extract the data from the 

papers and build a data base of models’ forecast errors including 1,136 observations with 21 

key features, covering a variety of models, regions, training and testing data sets etc, which 

is large enough to control for the risks of bias from various factors and produce robust, 

statistically significant results.  

Using OLS regression and data visualization methods to analyse the data base, we come up 

with the following conclusions:  

• Out-of-sample test set length positively correlates with the forecast errors. An 

additional day in the test set increases the error by 0.007-0.026 pp. The effect is 

larger for the classical models than for the state-of-the-art models, indicating a more 

robust performance of the latter.  

• Long test sets (at least one year) generate more meaningful conclusions on PV 

output forecast assessment. Restricting the bias from the difference in test set lengths 

can double the explanation power of the regression from 15% to 35%. 

• The possibility of “cherry picking” in reporting errors exists. One-day test sets have 

the average error value of 2.7%, which is around a quarter of that of all the other test 

sets (~10%). 

• The longer the forecast horizons are, the more difficult to have high forecast 

accuracy. On average, the intra-day and day-ahead forecast errors are higher than 
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the intra-hour by 3.45 pp and 6.12 pp respectively. The classical models are more 

sensitive to the change in forecast horizons than the state-of-the-art, implying the 

high potential of the state-of-the-art methods in improving the long horizon forecasts. 

• PV output forecasts have a steady improvement. Models published one year later 

have the average errors that are 0.64-0.98 pp lower. The progress is more significant 

for the state-of-the-art than for the classical methods. 

• Data processing techniques contributes to enhancing the forecast accuracy. Each 

one additional technique reduces the average errors by 1.25-1.32 pp. The effect is 

stronger for state-of-the-art methods, signalling the further improvement that can be 

made in the long run by this group of methodologies. 

• Among the data processing techniques observed in the data base, the technique of 

data normalization is the most effective, reducing the average error of the model by 

3.16 pp, followed by resampling technique (-2.88 pp) and the inclusion of NWP 

model’s output (-2.48 pp). 

• Hybrid, ensemble, and hybrid-ensemble models achieve the lowest forecast errors. 

Hybrid models are consistently superior to the others and outperform the classical 

methods by 3.41-3.93 pp. Hybrid-ensemble methods also achieve the NRMSE_avg 

that is 32%-40% lower, and ensemble methods report NRMSE_installed that is 57%-

72% lower than the individual models. 

• In the meanwhile, ML performs much worse when removing the key risks of bias in 

inter-model comparison. For example, analysing the data base of all test set lengths, 

ML’s average NRMSE_avg for day-ahead forecasts is 17.5%, which is close to the 

performance of hybrid-ensemble models (12%). However, when we include only the 

test sets of at least one year length, the same error metric increases to 35% for ML 

models– compared with hybrid methods (15-17%) and classical methods (19-20%). 

• The superiority of the state-of-the-art methods can be overestimated if we do not 

consider the risks of bias caused by context difference. The complexity-accuracy 

trade-off therefore favours the classical models in the short and medium run. 

However, the complex models show much higher potential to enhance forecasts’ 

quality in the long run thanks to the development of new data processing techniques. 

The future of PV output forecasts is consequently driven by the state-of-the-art 

models. 

These findings, as important materials for scholars to inherit systematic knowledge from 

historical literature, are crucial to the future development of PV output forecasts. Through the 

analysis process, we also realize how costly it is to conduct such a statistical analysis on a 

huge number of papers, which can be saved through a benchmark for assessing PV output 

forecasts. This paper takes the very first step towards establishing this benchmark. 
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Appendix A: The list of papers for data extraction  

This appendix presents the list of 66 papers from which we have extracted the data for the 

statistical analysis in this paper. 
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Appendix B: Model Classification 

In this paper, we follow the model classification approach that is suggested by many other 

scholars (e.g., Rajagukguk et al. (2020), Antonanzas et al. (2016), and Sobri et al. (2018)), 

dividing models into 3 categories: (1) physical models, (2) statistical models, and (3) 

combination of models or “complex models”. 

First, physical models, also called PV performance, parametric, or “white box” method, use 

mathematical and physical mechanisms to predict PV power based on the information of 

many meteorological parameters. There are 3 main types of physical models including 

numerical weather prediction (NWP) model, sky imagery model, and satellite imaging model, 

with NWP being the most popular (Rajagukguk et al., 2020). 

Second, statistical models include all the models that use statistical data (usually the 

historical PV output data, possibly combined with meteorological variables) for their inputs 

and try to figure out the relationship of the data to forecast the time series of PV output. 

Under this category, we distinguish between persistence models, classical models including 

simple and advanced classical models, and ML models.  

The persistence model, also known as the naïve or the elementary model, is the simplest 

form of the statistical model. It assumes that PV power output at time (t) the next day equals 

the PV output at the same time (t) of the previous day, which means the only input is the 

historical PV output data. For most of the cases, scholars claim that their proposed model 

outperform a range of other models, including the persistence. Because of the assumption 

that the value today equals tomorrow, the persistence model is not robust to the change in 

the weather conditions and only has the good performance on sunny days for very short-term 

forecasts. 

Simple classical methodologies include mainly regression and autoregressive models (AR), 

and their extensions such as (non-linear) AR using exogenous variables (N-) ARX, 

(seasonal) AR moving integrated average (S-)ARIMA, and (S-)ARIMAX. The extension 

versions usually handle the non-stationary data better and therefore perform better than the 

basic AR models.  

Advanced classical methodologies consist of the classical models that are combined with 

data processing and optimization techniques such as wavelet transformation, LOESS 

decomposition, gaussian regression, or exponential trend smoothing (ETS). 

ML techniques are well-known for their better handling the complex non-linear relationship 

between multiple inputs and outputs and abilities of self-adaptation and inference, 

accompanied by more complexity and computational burden. The most popular ML models 

are ANN-based models, followed by SVM, random forest, and an increasing number of newly 

proposed models (Rajagukguk et al., 2020).  

Finally, the combination of different methods and techniques is the most advanced and 

complex methodology, including hybrid, ensemble, and hybrid-ensemble models. Hybrid 

method or also called “grey box” combines physical and statistical methods, with the outputs 

of one model being the inputs of the other models, and possibly together with multiple 

optimization techniques, while ensemble is more about combining forecast outputs from 

many individual models. Hybrid-ensemble is the combination of the two.  
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We focus our analysis on comparing the performance of the classical models (including both 

simple and advanced classical) and the state-of-the-art methodologies (including the ML, 

hybrid, ensemble, and hybrid-ensemble models). 

Table 6 summarises the model classification and presents some examples of the models that 

are observed in the data set. 

Table 6: PV output forecast models classification 

Model classification Model 

Physical NWP (E. Lorenz et al., 2007; Ogliari et al., 2017) 

Statistical 

Persistence 
Almost all papers in the list of Appendix A use persistence as 
among the benchmark models 

Classical 

Simple ARIMA (Pedro and Coimbra, 2012; Tao et al., 2010), NARX 
(Tao et al., 2010), SARIMA (Vagropoulos et al., 2016 - 2016) 

Advanced  ETS-based model (Zang et al., 2020), Gaussian-based 
regression (Da Liu and Sun, 2019), MARS (Massidda and 
Marrocu, 2017), Theta model (Yang and Dong, 2018)  

State-of-
the-art 

ML ANFIS (Kumar and Kalavathi, 2018), BPNN (Yadav et al., 
2020), CFNN/ GRNN/RBFNN/ENN (Perveen et al., 2020), 
CNN/ RNN/FCNN (Jesus et al., 2019 - 2019), CSLSTM (Yu et 
al., 2020), DNN (Lee and Kim, 2019), FFNN (Dokur, 2020), 
kNN (Gigoni et al., 2018), LSTM (Chen et al., 2020), MLP (Liu 
et al., 2019), SVM (Wang et al., 2020a) 

Complex 

Hybrid ARMAX-ANFIS-LSTM-FCN (Dan A. Rosa De Jesus et al., 
2019), BPNN-TCM (Wang et al., 2020a), BP-SFLA-ANN 
(Asrari et al., 2017), GA-PSO-ANFIS (Semero et al., 2018), 
GRA-LSTM (Chen et al., 2020), K-means-ANN-PSO 
(Varanasi and Tripathi, 2019), WT-FNN-PSO (Raza et al., 
2019), WT-LSTM-dropout network (Mishra et al., 2020) 

Ensemble Ensemble-Avg/Ensemble-OLS/Ensemble-LAD/Ensemble-
CLS/Ensemble-lasso (Yang and Dong, 2018), Ensemble 
SARIMA(X) (Vagropoulos et al., 2016 - 2016) 

Hybrid-
ensemble 

CSM-ANN-Ensemble-CART (Massucco et al., 2019), 
Ensemble-Avg-post, Ensemble-CLS-post/Ensemble-LAD-
post/Ensemble-lasso-post/Ensemble-OLS-post (Yang and 
Dong, 2018) 
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Appendix C: Error metric formula 

This appendix shows the formulas of the error metrics whose data we extracted from the 

literatures, including the NRMSE, NMAE, and MAPE. The formulas presented below are 

observed as the standard formulas of these error metrics as provided by the individual 

papers on PV output forecasts listed in Table 5. 
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where N is the total number of forecast points in the forecasting period, i represents the time 

step, 𝑝�̂� and 𝑝𝑖 represent the forecast and actual values of PV output at the time step i, �̅� 

stands for the mean value of PV output, 𝑝𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑/𝑝𝑒𝑎𝑘 indicates the installed capacity of the 

PV plant or the peak power achieved by the plant, and 𝑛�̂� and 𝑛𝑖 are the normalized forecast 

and actual PV output calculated based on the normalized input data at the time step i. 

 

 

 


