

Electricity Economic Model of the African Continent

Robert Gaugl,

Institute of Electricity Economics and Energy Innovation / Graz University of Technology

09.09.2021

Introduction

- Five Power Pools in Africa
- Goal is to have a greater cross-border trade within the power pools
 - More reliability and
 - More cost-effective electricity production
- Requirements for functional Power Pools
 - Development of cross-border interconnections
 - A common legal and regulatory framework
 - Multi-country organisational structures that plan, harmonise and develop a framework for crossborder electricity trading

Source: UNEP, "Atlas of Africa Energy Resources", 2017

Overview African Power Pools

North African Power Pool

- Established in 1975
- Also known as Electricity Committee of the Maghreb region (COMELEC)
- NAPP is the power pool with the highest connectivity and best infrastructure in Africa
- Imports and exports between the NAPP countries are low
- Existing connections to Europe via
 Morocco-Spain connection

Key Facts NAPP

Algeria, Libya, Mauritania, Morocco, Tunisia

Total Electricity Production [GWh]	181,338
Biofuels and Waste [GWh]	26
Fossil Fuels [GWh]	171,035
Nuclear [GWh]	0
Hydro [GWh]	1,564
Geothermal [GWh]	0
Solar, Wind etc. [GWh]	8,713
Final Consumption [GWh]	130,990
Net Import [GWh]	6,414
FossilHydro	ls and Waste Fuels Wind, etc

Source: African Energy Commission, "Africa Energy Database 2019"

Southern African Power Pool

- Established in 1995
- South Africa major force behind the SAPP
- The SAPP is Africa's most advanced power pool with
 - A Day-Ahead-Market for hourly energy contracts for the following day since 2009 and
 - an Intra-Day-Market for trades up to an hour before delivery since 2016
- Lack of generation and interconnection capacity prevents further development

Key Facts SAPP

Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland (Eswatini), Tanzania, Zambia, Zimbabwe

Total Electricity Production [GWh]	336,289
Biofuels and Waste [GWh]	910
Fossil Fuels [GWh]	253,023
Nuclear [GWh]	15,217
Hydro [GWh]	60,131
Geothermal [GWh]	1
Solar, Wind etc. [GWh]	7,007
Final Consumption [GWh]	267,481
Net Import [GWh]	3,137
 5% 18% Nucle Hydro Geoth 	ar

Source: African Energy Commission, "Africa Energy Database 2019"

Eastern African Power Pool

- Established in 2005
- Eygpt¹ resigned from the EAPP because of its opposition to the Grand Ethiopian Renaissance Dam (GERD)
- EAPP currently works with bilateral agreements
- Is planned to have a centralised trading market in place until 2025

Key Facts EAPP

Burundi, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Libya, Rwanda, Sudan, Tanzania, Uganda

Total Electricity Production [GWh]	304,223	
Biofuels and Waste [GWh]	362	
Fossil Fuels [GWh]	239,579	
Nuclear [GWh]	0	
Hydro [GWh]	56,514	
Geothermal [GWh]	4,438	
Solar, Wind etc. [GWh]	3,330	
Final Consumption [GWh]	247,389	
Net Import [GWh]	-335	
□ 19% □ 79%	 Biofuels and Waste Fossil Fuels Hydro Geothermal Solar, Wind, etc 	

¹ Egypt is still included here, because otherwise one of the biggest countries would not be included in any of the Power Pools

Source: African Energy Commission, "Africa Energy Database 2019"

West African Power Pool

- Established in 2001
- Trading is done via bilateral agreements
- Weakly developed connections between the member states of the WAPP are a big obstacle to increase electricity trading

Key Facts WAPP

Benin, Burkina Faso, Ivory Coast (Cote d'Ivoire), Gambia, Ghana, Guinea, Guinea Bissau, Libe-ria, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo

Total Electricity Production [GWh]	76,028
Biofuels and Waste [GWh]	368
Fossil Fuels [GWh]	56,702
Nuclear [GWh]	0
Hydro [GWh]	17,937
Geothermal [GWh]	0
Solar, Wind etc. [GWh]	1,021
Final Consumption [GWh]	63,010
Net Import [GWh]	2,400
■ 24% ■ Foss ■ 75%	els and Waste I Fuels 5 , Wind, etc

Source: African Energy Commission, "Africa Energy Database 2019"

Central African Power Pool

- Established in 2005
- Smallest power pool in Africa
- Least developed and only basic infrastructure
- Regional trading is very low
- In contrast to the other power pools it has a large share of hydro power
- Expected that electricity demand will increase significantly in the coming decades

Key Facts CAPP

Angola, Burundi, Cameroon, Central African Republic, Chad, Republic of Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon, São Tomé & Principe

Total Electricity Production [GWh]	38,434
Biofuels and Waste [GWh]	44
Fossil Fuels [GWh]	12,310
Nuclear [GWh]	0
Hydro [GWh]	25,972
Geothermal [GWh]	0
Solar, Wind etc. [GWh]	108
Final Consumption [GWh]	26,287
Net Import [GWh]	267
□ 32% ■ Fossil □ 68% ■ Hydro	els and Waste Fuels Wind, etc

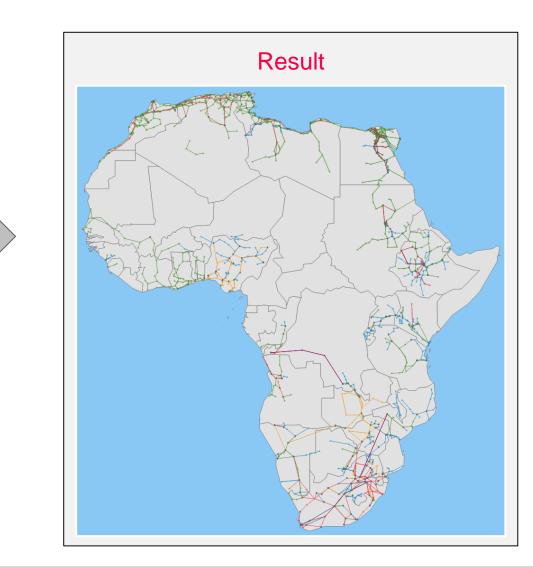
Building an Electricity Economic Model

of the African Continent

Path towards an Electricity Economic Model

- Information required to build an electricity economic model of Africa
 - Electricity grid data
 - Power plant data
 - Electricity consumption
 - Economic and other country specific data
- Problems
 - Compared to Europe information is hard to find and scarce
 - Language barrier is a problem

Electricity Economic Model of the African Continent



Methodology – Grid Data

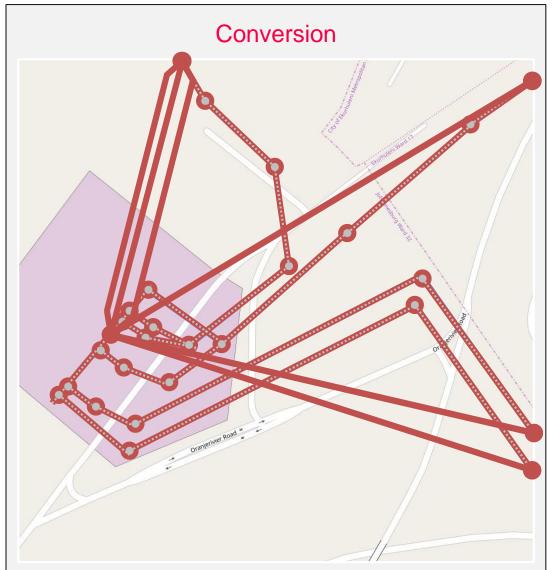
IIEE

11

Source: OpenStreetMap, "Power line data retrieved from https://overpass-turbo.eu/."

Robert Gaugl, Institute of Electricity Economics and Energy Innovation / Graz University of Technology 09.09.2021

Developed


Conversion

Tool

12

- Methodology Grid Data
- OpenStreetMap data is too detailed to be used in our desired model
- Line length calculated using actual path of line before simplifications
- Substation with busbars have to be converted into one node per voltage level
- Lines simplified to be straight connection between two nodes

Source: OpenStreetMap, "Power line data retrieved from https://overpass-turbo.eu/."

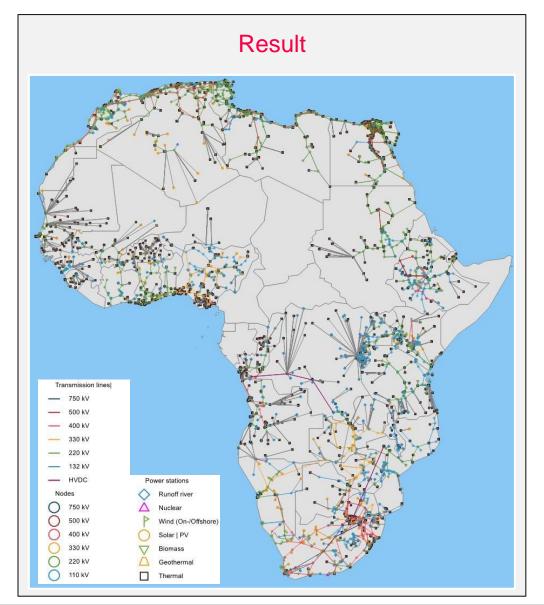
Electricity Economic Model of the African Continent

Methodology – Grid Data

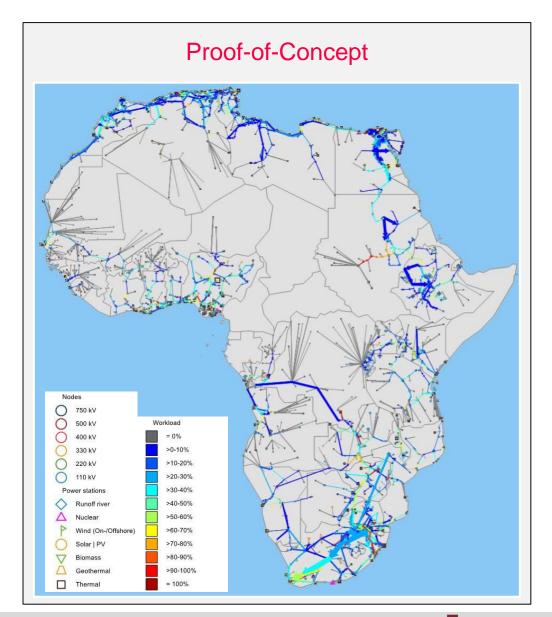
 Available grid data from OpenStreetMap converted to data format commonly used by various electricity models with nodes and lines stored in the Excel file format

		Nodes		
ID [-]	Country [-]	Voltage [kV]	Lat [°]	Long [°]
ZA00001	ZA	132	-33,836	25,522
ZA00002	ZA	132	-33,981	25,467
NA00003	NA	220	-24,655	18,033
NA00004	NA	132	-22,586	17,365
NA00005	NA	220	-22,586	17,365
NA00006	NA	400	-22,586	17,365
ZA00008	ZA	132	-34,000	24,783
ZM00009	ZM	330	-15,753	28,161
÷	÷	÷	÷	÷

Lines				
ID [-]	Country [-]	Node 1 [-]	Node 2 [-]	Voltage [kV]
LTGAO1764	AO	AO03077	AO01277	220
LTGDZ3436	DZ	DZ00934	DZ02105	220
LTGEG3854a	EG	EG00676	EG04730	500
LTGEG3854b	EG	EG00676	EG04730	500
LTGMA0838a	MA	MA00699	MA00709	220
LTGSD2473a	SD	SD00813	SD01024	220
LTGTZ4479	ΤZ	TZ01391	TZ01160	220
LTGZW1397	ZW	ZW01060	ZW01063	330
÷	÷	:	÷	÷


Methodology – Power Plant Data

- Currently the PLATTS database is used (Options to use Open Source Data are considered)
- Tool to convert data into format readable by our considered models
- Challenges
 - Location only on city level available -> Geocoding process used to transform city into GPS coordinates
 - Which nodes do the power plants feed into? → First approximation: Feed into nodes with closest spatial distance within country


Conclusion

- Grid data from OpenStreetMap transformed into files with
 - Nodes
 - Lines
- Power plants from PLATTS converted to be readable by models, geocoded and feed-in nodes assignd

- Conclusion
- Grid data from OpenStreetMap transformed into files with
 - Nodes and
 - Lines
- Power plants from PLATTS converted to be readable by models, geocoded and feed-in nodes assignd
- Proof-of-concept is working

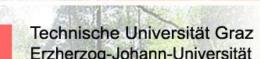
Next Steps

- **Complete** the economic and other country specific data
- **Choose** the **model** to run simulations
 - ATLANTIS [1]
 - LEGO [2]
 - Both?
- Calibrate the model
- Develope scenarios for simulation
 - Business-as-Usual-Scenario
 - Existing-Plans-Scenarios
 - Renewable-Scenario

H. Stigler, U. Bachhiesl, G. Nischler, and G. Feichtinger, "ATLANTIS: techno-economic model of the European electricity sector"
 S. Wogrin, D. Tejada-Arango, S. Delikaraoglou, and A. Botterud, "Assessing the impact of inertia and reactive power constraints in generation expansion planning"

Thank you for listening!

Electricity Economic Model of the African Continent


Dipl.-Ing. Robert Gaugi

Graz University of Technology Institute of Electricity Economics and Energy Innovation Inffeldgasse 18 A-8010 Graz

Tel.: +43 316 873 7904 Fax: +43 316 873 107904

robert.gaugl@tugraz.at E-Mail: Web: iee.tugraz.at

in https://www.linkedin.com/in/robert-gaugl/

Institut für Elektrizitätswirtschaft und Energieinnovation

Erzherzog-Johann-Universität