

ABS FÜRS STROM-NETZ Market potentials for new flexibility products for the European power system

G. Lettner , C. Corinaldesi, C. Loschan, W. Gawlik, C. Alacs – TU Wien G. Irsigler, M. Urlesberger – Verbund Energy4Business GmbH A. Stimmer, M. Lenz, M. Froschauer, E. Obererlacher – Austrian Power Grid

> IEWT 2021, 08.09.2021 Online Konferenz

- Motivation
- Evaluation of present and future inertia constant in the Central European power system
 - EDisOn+ market model
 - Analysis results
- Description of new fast products of control reserves
- Market potential analysis
- Conclusion

- Increasing share of inverter-based generation plants and associated reduction in the number of conventional plants with synchronous generators and a related decrease in the network time constant
- Power grid stabilization as a future challenge whether the current primary control is still sufficient
- Analysis of future inertia time constants
- Design of new fast products of control reserves
- Elaboration of market potentials of new control reserve products

Verbund

ABS4TS0

420

TU ESEA

AUSTRIAN INSTITUTE OF TECHNOLOGY

08.09.2021

- Operation of the power plants based on different scenario inputs and historical data
- Power plant related inertia values (H-values) and the load are then considered to calculate the inertia of the synchronous area

08.09.2021

= Electricity Dispatch Optimization: Linear Programming (LP) developed in MATLAB®

objective function:

minimising (wholesale generation costs) + (procurement costs of aFRR & mFRR)

constraints:

- electricity generation & DSM: demand = supply
- heat: demand = supply (power-to-heat & CHPs)
- balancing procurement: required = supply
- capacity restrictions of power plants
- ramping limits and start costs of thermal power plants
- reservoir level equations for hydro storages and other storages
- spillage of RES-E (solar, wind, RoR, natural inflow) and Not Supplied Energy
- power flows, injections and exchanges via NTC or DC power flow approach

FRR = Frequency Restoration Reserve (automatic & manual), DSM = demand side management, CHP = combined heat and power, RoR = run-of-river, NTC = net transfer capacity

- functionalities:
 - deterministic and assumes a perfectly competitive market with perfect foresight
 - hourly resolution of a whole year at country or control area level for Central Europe
 - control areas can be split into balancing groups
 - rolling horizon optimisation (monthly, biweekly, weekly or daily)
 - different product designs for aFRR (weekly, daily P, OP, WE \rightarrow 4h) & mFRR
 - thermal power plants, (pumped-) hydro storages and other storages (like batteries) can procure balancing capacity (incl. ramping)

ABS4TS0

enneT

ransnetBW

° IT

mprion

• FR

50hertz

∘ CZ

APG

° SI

• PL

° SK

HU

- implicit allocation of transmission capacity for balancing
- geographical scope:

08.09.2021

- Wholesale (NTC or DC power flow): AT, DE, NL, BE, FR, CH, IT, SI, HU, SK, CZ & PL
- Wholesale (NTC): RG CE Region
- balancing: APG, TransnetBW, Amprion, TenneT, 50Hertz, TenneT NL & ELIA.

FRR = Frequency Restoration Reserve (manual and automatic) P = Peak, OP = Off-Peak, WE = Weekend, 4h = 4-hour-products

H – Value per Country in GA 2030 when the total H – Value is minimal

Rotational energy of the main contributors (2017–2019 vs. scenarios)

08.09.2021

ABS4TS0

11

08.09.2021

ABS4TS0

13

Working title	Short	Control mechanism
Enhanced Frequency Response	EFR	∆f-proportional
Frequency Containment Reserve PLUS	FCR+	∆f-proportional
Fast Active Power Injection	FAPI	f-trigger
Synthetic Inertia	SI	Δf/Δt-proportional

EFR / FCR+

 Basic idea: Complementary reserve acting much faster than conventional frequency containment reserve (FCR)

Options:

- EFR as separate reserve, that acts outside of the frequency band of FCR (if frequency deviations are greater than 200 mHz)
- FCR+ as part of FCR, that acts faster than conventional FCR

FCR

FCR+

08.09.2021

FAPI

 Basic idea: Support of conventional frequency reserves by adapting active power output triggered by a predefined frequency threshold

SI:

 Basic idea: Emulation of real inertia; Improvement of system answer to frequency changes ("Inertial Response")

Product	Base scenario (/B)	Alternative scenario (/A)	
EFR	Procurement with symmetric products	Procurement with asymmetric products	
	analog to existing control reserve products	analog to existing control reserve products	
FCR+	Procurement within the framework of the	No alternative scenario defined	
	existing FCR market		
SI	Procurement with symmetric products analog	Inertia certificate trading	
	to existing control reserve products		
FAPI	Procurement with symmetric products analog	Procurement with asymmetric products	
	to existing control reserve products	analog to existing control reserve products	

Market criteria	Detail criteria	Requirement	Premises	
Market integration	Market area	Creation of uniform market areas	Consistent market goals, time schedules, product requirements, and replacement of capacity.	
	Synergy	Synergies with existing markets	Use of existing processes and platforms	
	Product range	Meaningful addition to the existing product range	DayAhead, IntraDay, Reserve markets, Congestion management,	
Market liquidity	Level-Playing-Field	Uniform requirements and market design	Product requirements for different technology options	
	Incentives	Revenue potential must cover costs and offer opportunities compared to alternative markets	For existing and new power plants	
	Technology-neutral	As many different technologies as possible suitable	Different technology options	
Market entry	Product requirement	Prequalification and quality of service should be possible with different technologies	Different technology options	
	Product complexity	Product definition as simple as possible and only necessary product differentiation	Product differentiation: product time steps, energy direction, bid size, timing, dynamic sizing,	
	Process effort	Market participation possible with minimal process effort	Market entry economical even with low transaction volume	
	Automation	Interface for fully automated trading	For service providers with high transaction volumes	
Price evaluation	Costs	Price evaluation takes into account all cost components	Cost components: Investment costs, fixed costs, variable costs, opportunity costs, price risk.	
	Revenues	Revenue potential assessable in the medium term	Market entry and investments are made on the basis of revenue potential estimates	
Market rules	Trading procedure	Decision between auctions or continuous trading	Continuous trading only makes sense with strong intraday price movements and high transaction volume	
	Trade products	Combination of commercial products only if absolutely necessary	/Trading products: Certificates, options and energy	
	Pricing	Decision between pay-as-bid or marginal pricing	Marginal pricing only makes sense in the case of a high supply bids	

ABS4TS0

Market criteria	EFR/B	EFR/A	FCR+/B	SI/B	SI/A	FAPI/B	FAPI/A
Market integration	1,7	2,0	1,0	2,3	2,3	2,3	2,3
Market liquidity	1,7	1,3	1,3	2,3	1,3	2,3	1,7
Market entry	1,5	1,3	2,3	2,8	2,3	2,3	2,0
Price evaluation	2,5	2,0	2,0	2,0	2,0	1,5	2,0
Market rules	2,0	1,7	1,0	3,0	1,3	2,0	1,3
TOTAL	1,9	1,7	1,5	2,5	1,9	2,1	1,9

Highly applicably	1
Possible applicably	2
Less applicably	3
Not applicably	4

- FCR+ could be procured as a subset in the existing FCR tenders, opening up synergies regarding market integration and market rules.
- EFR could be particularly suitable for suppliers that have difficulties to participate in the currently existing primary control reserve markets. In the case of an asymmetric product design, even controllable loads could participate in such a market.
- Due to the complexity of the concept of SI, certificate trading appears to be more advantageous than a tender concept via a symmetrical product design.
- A combined evaluation of market aspects, operational aspects and the underlying concept (activation based on a static frequency trigger) shows that FAPI is the least favorable option for a market implementation

The project "ABS4TSO" is funded by the Climate and Energy Fund and carried out within the framework of the Energy Research Programme 2017. <u>https://www.apg.at/de/projekte/abs4tso</u>

GEORG LETTNER

Technische Universität Wien Institut für Energysysteme und elektrische Antriebe Energy Economics Group – EEG

> Gußhausstraße 25-29 / E370-3 1040 Wien, Österreich

[T] +43 1 58801 370 376[E] lettner@eeg.tuwien.ac.at[W] www.eeg.tuwien.ac.at