

Wasserstofferzeugung aus Klärschlamm

08.09.2021, IEWT 2021

Dr. Katharina Fürsatz

Agenda

Grüne Gase aus Produktgas

Warum Klärschlamm?

Fallstudie Klärschlammgaserzeugung

Demonstration Klärschlammgaserzeugung

Zusammenfassung und Ausblick

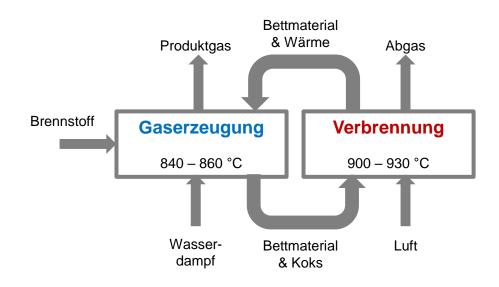
Agenda

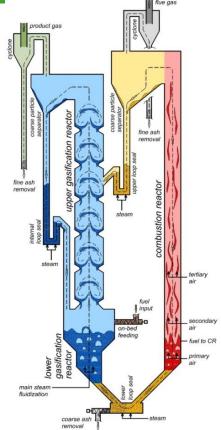
Grüne Gase aus Produktgas

Warum Klärschlamm?

Fallstudie Klärschlammgaserzeugung

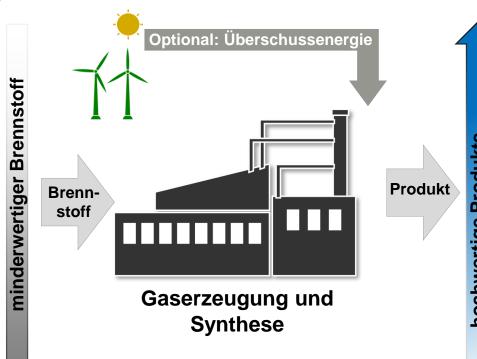
Demonstration Klärschlammgaserzeugung


Zusammenfassung und Ausblick


Gaserzeugung

- Bei der Gaserzeugung wird ein Feststoff zu einem Gas umgewandelt
- Das entstehende Gas (Produktgas) besteht hauptsächlich aus CO, CO₂, H₂ und CH₄
- Erprobte Technologie
 - Kohlevergasung zur Stadtgaserzeugung (19./20. Jahrhundert)
 - Holzvergaser f
 ür Kraftfahrzeuge (2. Weltkrieg)
 - Kohlevergasung zur Kraftstoffproduktion (Sasol, Südafrika)

Gaserzeugung aus Klärschlamm – DFB-Dampfgaserzeugung



Verwertungsmöglichkeiten von grünem Produktgas

Stoffe

- Wachse
- Kerosin
- Alkohole
- Diesel

Gase

- CH₄
- H₂

Energie

- Elektrisch
- Thermisch

Agenda

Grüne Gase aus Produktgas

Warum Klärschlamm?

Fallstudie Klärschlammgaserzeugung

Demonstration Klärschlammgaserzeugung

Zusammenfassung und Ausblick

Klärschlamm

- Abfallstrom aus der Wasseraufbereitung
- Bestandteile
 - Wasser
 - Organisches Material
 - Mineralische N\u00e4hrstoffe
 - Pathogene
 - organische Schadstoffe
 - Schwermetalle

Relativ geringer Heizwert, nicht zuletzt wegen des hohen Wassergehaltes. Der hohe Anteil an anorganischem Material (Asche) und die enthaltenen Schwermetalle machen Klärschlamm zu einer Herausforderung für alle Entsorgungsprozesse.

Warum Klärschlammverwertung?

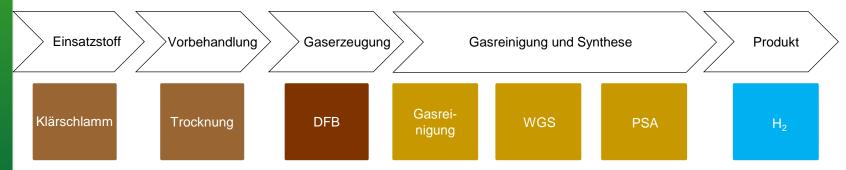
- 8 Mt Klärschlamm jährlich in der EU (2016)
 - ~Hälfte wurde auf Feldern ausgebracht
- 240 000 t in Österreich
 - ~ Hälfte wurde verbrannt
- Ausbringung auf Feldern wird mehr und mehr verboten
- Rückgewinnung der enthaltenen Nährstoffe auf andere Weise notwendig
 - Beispielsweise aus Asche (Verbrennung, Gaserzeugung)
 - Österreich plant eine Rückgewinnung von Phosphor von 65-85%

Agenda

Grüne Gase aus Produktgas

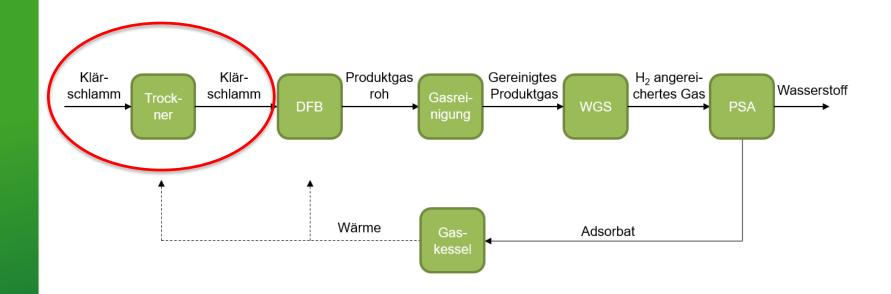
Warum Klärschlamm?

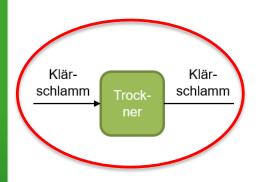
Fallstudie Klärschlammgaserzeugung

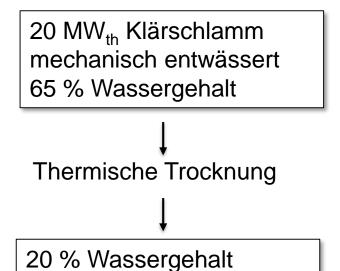

Demonstration Klärschlammgaserzeugung

Zusammenfassung und Ausblick

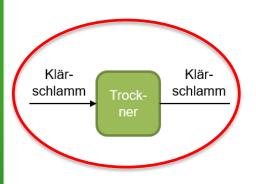
Wasserstoff aus Klärschlamm via DFB-Dampf-Gaserzeugung



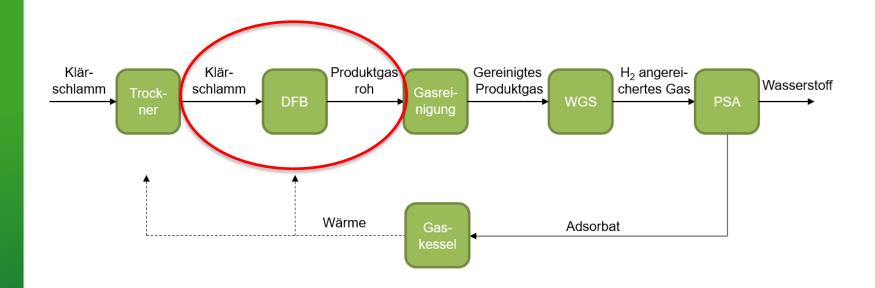

Fallstudie: Wasserstoff aus Klärschlamm



Brennstoff Trocknung

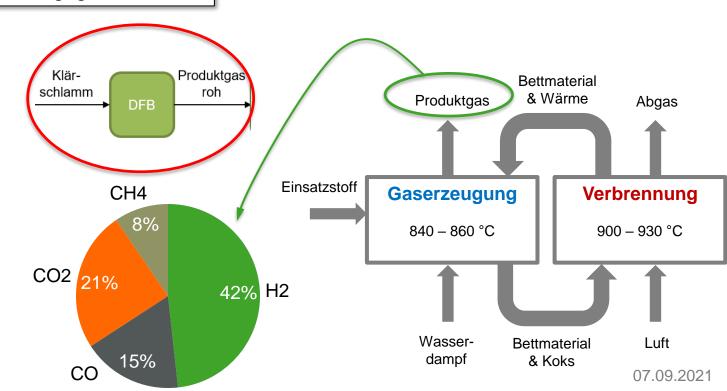


Brennstoff Trocknung

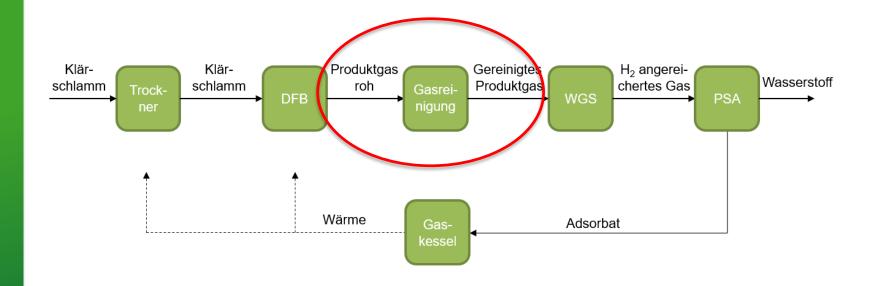


	Einheit	Weichholz	Klärschlamm
Aschegehalt	wt% db.	0,2	52,3
Kohlenstoff	wt% db.	50,7	25,48
Wasserstoff	wt% db.	5,9	3,02
Stickstoff	wt% db.	0,2	3,46
Schwefel	wt% db.	n.d.	1,18
Chlor	wt% db.	n.d.	0,106
Sauerstoff	wt% db.	43,00	14,45
Flüchtige Stoffe	wt% db.	85,4	44,55
Heizwert	MJ kg ⁻¹ db.	18,9	10,02

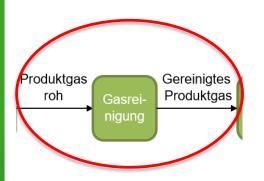
Fallstudie: Wasserstoff aus Klärschlamm



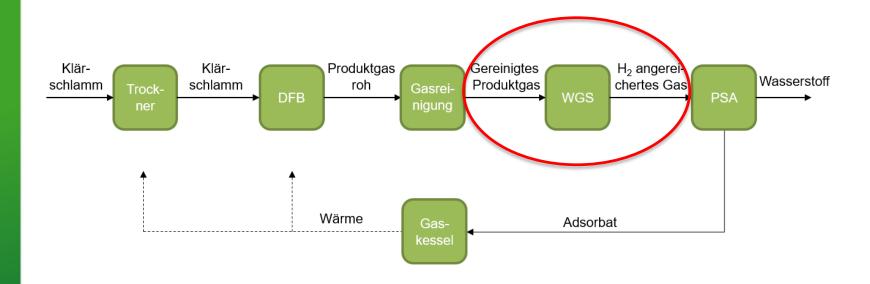
DFB-Dampf-Gaserzeugung



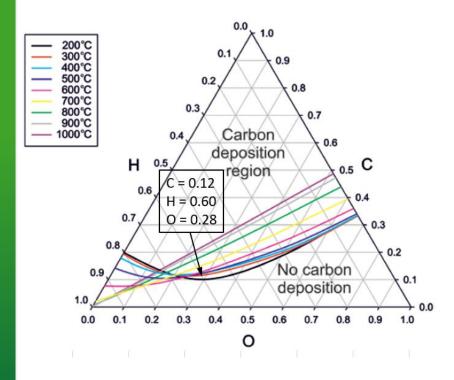
Kaltgaswirkungsgrad ~ 70%

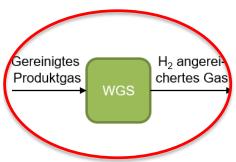

Fallstudie: Wasserstoff aus Klärschlamm

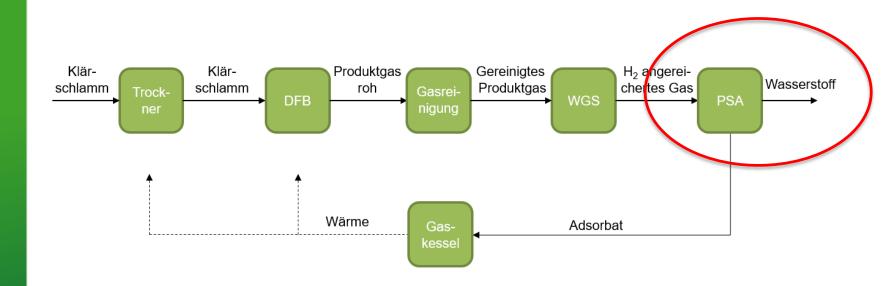
Gasreinigung



	Einheit	Weichholz	Klärschlamm
Flugkoks	g Nm ⁻³ db.	1,2	1,1
Staub	g Nm ⁻³ db.	0,4	8,1
GCMS tar	g Nm ⁻³ db.	4,5	16,3
(ohne BTEX)			
Gravime-	g Nm ⁻³ db.	1,5	4,75
trischer Teer			
H ₂ S	g Nm ⁻³	0,3	21,3
NH_3	g Nm ⁻³ db.	1,1	35,0


Fallstudie: Wasserstoff aus Klärschlamm



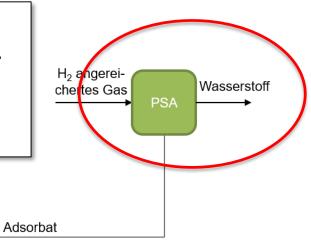


$$CO + H_2O \leftrightarrow CO_2 + H_2$$

Erhöhung der Wasserstoffausbeute mittels katalytischer Wasser-Gas-Shift Reaktion

Fallstudie: Wasserstoff aus Klärschlamm

Wasserstoffabtrennung mittels Druck-Wechsel-Adsorption


07.09.2021

Abtrennung von hochreinem Wasserstoff (99,97 vol%,10 bar), H₂-recovery von 80%.

Wärme

Adsorbat wird thermisch dem Prozess rückgeführt.

ere

Alternativszenario: Abtrennung von Wasserstoff (98 vol%,10 bar), H₂-recovery von 85%.

Gaskessel

Adsorbat wird thermisch dem Prozess rückgeführt.

Durch die geringere Qualitätsanforderung kann die Ausbeute erhöht werden.

Kennzahlen im Überblick

Parameter	Benchmark - Hackschnitzel	Fallstudie - I	Klärschlamm
H ₂ Qualität	99,97 vol%	99,97 vol%	98 vol%
Kaltgas-Wirkungsgrad	77,0%	69,6%	69,6%
LHV-basierter Wirkungsgrad von Brennstoff zu Wasserstoff	68,9%	42,1%	44,7%
Gesamtwirkungsgrad	60,0%	38,9%	40,0%

Technologie-Reifegrad

	Benchmark - Hackschnitzel	Fallstudie - Klärschlamm
Trockner	TRL 9	TRL 9
Zweibettwirbelschicht- gaserzeugung	TRL 9	TRL 3-5
Gasreinigung	TRL 9	TRL 2-5
Wasser-Gas-Shift	TRL 9	
Druckwechseladsorption	TRL 9	
Gaskessel	TRL 9	
Gesamte Prozesskette	TRL 5	TRL 2

Agenda

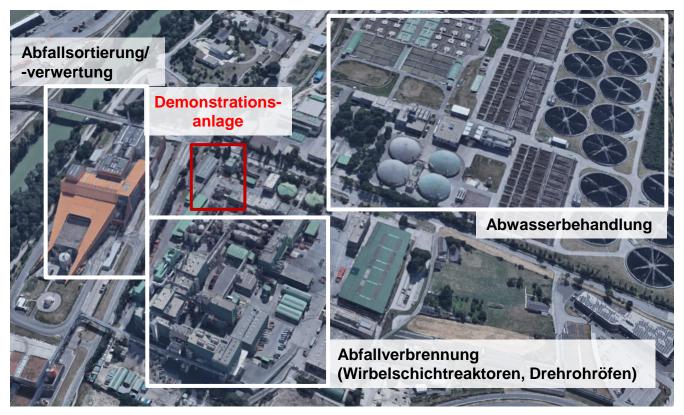
Grüne Gase aus Produktgas

Warum Klärschlamm?

Fallstudie Klärschlammgaserzeugung

Demonstration Klärschlammgaserzeugung

Zusammenfassung und Ausblick


Demonstration in Wien Simmering

Demonstration in Wien Simmering

Agenda

Grüne Gase aus Produktgas

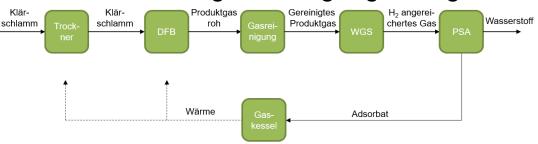
Warum Klärschlamm?

Fallstudie Klärschlammgaserzeugung

Demonstration Klärschlammgaserzeugung

Zusammenfassung und Ausblick

Zusammenfassung



- Neue erneuerbare Quellen für den steigenden H₂-Bedarf sind notwendig für eine CO₂-neutrale Gesellschaft
- Klärschlamm ist ein möglicher Rohstoff, da er als Abfallstoff anfällt und eine Verwertungsstrategie notwendig ist
- DFB-Dampfgaserzeugung ist eine vielversprechende Technologie für Wasserstoff aus Klärschlamm
 - Stickstofffreies Gas
 - Thermische Zerstörung von Pathogenen
 - Nährstoffe können aus der Asche rückgewonnen werden

Fallstudie: Wasserstoff aus Klärschlamm

- Mit 20 MW Klärschlamm können 8,4 MW Wasserstoff (entspricht 14 000 Wasserstoffautos) produziert werden
- Für die meisten Prozessschritte sind bereits kommerzielle Anlagen verfügbar → Marktreife schnell erreichbar
- Derzeit nur unzureichende Daten zu Verunreinigungen des Gases der Klärschlammgaserzeugung verfügbar

Ausblick

- Inbetriebnahme der Demonstrationsanlage Herbst/Winter 2021
- Langzeitversuche auf der 1 MW Demonstrationsanlage können die benötigten Daten zu Verunreinigungen im Produktgas liefern
- Mithilfe der Versuchsdaten der Langzeitversuche sind auch wirtschaftliche Betrachtungen möglich