

aufgrund eines Beschlusses des Deutschen Bundestages

Modellierung von Smart Markets zur Lösung von Engpässen im Deutschen Übertragungsnetz

Lukas Maximilian Lang, Jonas Egerer, Veronika Grimm, Ulrike Pfefferer

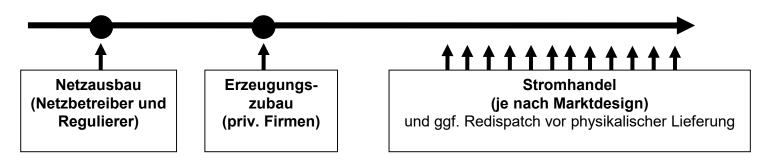
Ergebnisse aus dem Projekt EOM-Plus

Motivation & Konzept

- Anstieg von Gesamtkosten der Maßnahmen zum Engpassmanagement in Deutschland, durch strukturelle Unterschiede bei regionaler Erzeugung und Nachfrage im Markt [BNetzA (2020)]
- Engpassmanagement in Deutschland (und z.B. auch Österreich) bisher v.a. über kostenbasierten Redispatch und Einspeisemanagement erneuerbarer Anlagen organisiert (zukünftig zusammengefasst in Redispatch 2.0)
- EU-Vorgabe zum marktbasierten Redispatch, jedoch bisher keine Umsetzung aufgrund der Gefahr von strategischem Gebotsverhalten [Artikel 13 Abs. 1 & 2 EBM-VO]
- Fehlende Bereitstellung von regional differenzierten Investitionsanreizen durch zonales Marktdesign und Kostengleichstellung im Redispatch [Grimm et. al. (2016)]
- Einführung zeitlich und regional begrenzter Marktlösungen zum Engpassmanagement parallel zum existierenden System dennoch möglich [Ecofys & Fraunhofer IWES (2017)]

Konzept der "Smart Markets":

- Regionale Märkte mit eigener Preisbildung, an dem sowohl größere als auch kleinere Flexibilitätsanbieter teilnehmen können (regionale Flexibilitätspotentiale können genutzt werden)
- Funktion der Märkte als (kostengünstigere) Ergänzung zum Redispatch zu sehen
- Kostengrenze über Einbezug einer regionalen Redispatchprognose mit Kostenreferenz



Mehrstufige Modellierung (1)

- Ziele von Smart Markets: kurzfristig regionale Märkte für zusätzliche Anbieter (Kostensenkungen), mittelfristige Bereitstellung von regionalen Preissignalen zur Investitionsentscheidung in Flexibilität und Reduktion von nötigem Netzausbau
- Analyse dieser Effekte innerhalb eines **mehrstufigen Strommarktmodells** [Ambrosius et. al. (2019), Grimm et. al. (2016), Grimm et. al. (2020)]

In der Modellierung werden sämtliche Entscheidungen über **Zubau endogen** hergeleitet:

- konventionelle Kraftwerke (inkl. Backup Kraftwerke),
- Erneuerbare Energien, sowie der
- Stromnetz- und HGÜ-Ausbau

- Erweiterung des mehrstufigen Modells um eine weitere Smart Market Stufe
- Wesentliche Ergebnisse: Gesamtkosten, Redispatch und Investitionsentscheidungen

Mehrstufige Modellierung (2)

Input

Erzeugungskapazitäten

- Kraftwerke und Speicher
- Produktionskosten

Regionale Struktur

- Topologie Übertragungsnetz
- Stromangebot und Nachfrage

Rahmenbedingungen

- Marktregeln
- Engpassmanagement

Stündliche Werte

- Nachfrageprognosen
- Verfügbarkeit Erzeugung

Regionale Netzcluster

- Flexibilitätsoptionen
- Zahlungsbereitschaften

Ergebnisse

- Marktpreise
- Netzgebühren
- EEG-Umlage
- Übertragungsnetzausbau
- Kraftwerksausbau
- Backup Kraftwerke

- CO₂ Emissionen
- Erzeugungsmengen

Verteilungs- und Stakeholdereffekte

- Lokale Engpassbepreisung
- Nutzung von Flexibilitäten

Mehrstufige Modellierung (3)

Modellstufe 1: Investitionsentscheidung ins Stromnetz

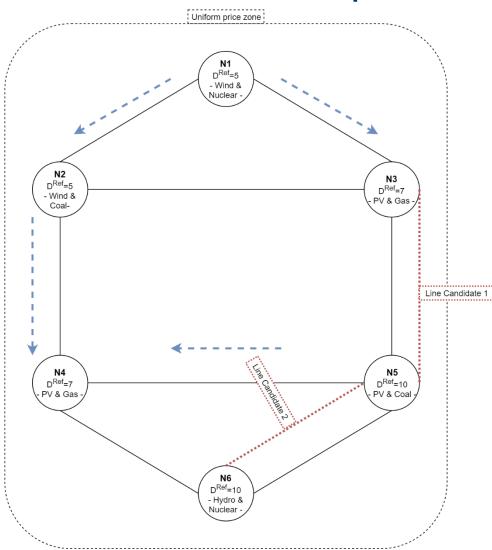
- → Netzausbau wird von zentraler Stelle aus kostenoptimal geplant
- → Dazu: Antizipation von Spotmarkt Bedarf zum Engpassmanagement

Modellstufe 2: Zonaler Strommarkt mit Einheitspreis

- → Strommarkt liefert das Marktgleichgewicht
- → Marktgetriebene Investitionen in Erzeugung berücksichtigt

Modellstufe 3: Smart Market

- → Regionale Märkte (Marktparameter aus Prognose Engpässe und Redispatch)
- → Antizipation von Engpassmanagement im herkömmlichen Sinne


Modellstufe 4: Finales Engpassmanagement

- → Redispatch 2.0 von konventionellen und Erneuerbaren Anlagen
- → Beitrag von Smart Markets berücksichtigt

Ein einfaches 6-Knoten-Beispiel

- Vereinfachtes Beispielnetz für Deutschland: Sechs Knoten innerhalb einer Preiszone
- Nördliche Knoten mit hoher Erzeugung zu niedrigen Grenzkosten
- Südliche Knoten mit hoher Referenznachfrage und relativ teurer Erzeugung
- Acht Leitungen mit identischen technischen Eigenschaften
- Ausbaukandidaten für neue Leitungen formuliert
- Größte Flüsse im Netz von Norden nach Süden
- Jeder Knoten besitzt mehrere ungenutzte Flexibilitätspotentiale mit unterschiedlichen Grenzkosten

Engpässen & Smart Markets

- Prognose von Engpässen nötig als Aktivierungskriterium für lokale Smart Markets
- Berechnung über **Differenz** zwischen physikalisch möglichen Flüssen und optimalen Flüssen ohne Leitungsbeschränkung:

$$f_{t,l}^{C} = f_{t,l}^* - f_{t,l}^{max}$$

- Berechnung der Mengenüberschreitung für jeden Engpass je Zeitschritt
- Smart Markets an einzelnen oder mehreren Netzknoten werden eingesetzt, um Engpässen im Netz entgegenzuwirken
- Gesucht: Einfluss eines Knotenpunktes im Netz auf den Fluss auf einer Leitung, also auch den Netzengpass
- Dazu wird die **nodale PTDF-Matrix** (Power-Transfer-Distribution-Factor) verwendet

Auswahl der relevanten Smart Market Gebiete: PTDF-Interpretation

Für das 6-Knoten-Beispiel mit 8 Leitungen und zwei potenziellen Ausbaukandidaten ergibt sich die folgende PTDF-Matrix mit der Dimension 10 Leitungen mal 6 Knoten:

		1	2	3	5	6
$PTDF_{l,n} =$	1 2 3 4	0.506 0.494 -0.012 0.518	-0.120 0.120 0.241 0.639	0.133 -0.133 -0.265 0.398	0.072 -0.072 -0.145 0.217	0.048 -0.048 -0.096 0.145
	5	0.241	0.181	0.301	-0.108	-0.072
	6	-0.289	-0.217	-0.361	-0.470	-0.313
	7	-0.193	-0.145	-0.241	-0.313	-0.542
	8	0.096	0.072	0.120	0.157	-0.229
	9	0.241	0.181	0.301	-0.108	-0.072
	10	0.096	0.072	0.120	0.157	-0.229

- Es wird ein Knotenpunkt als Senke (Referenzknoten) angenommen (in diesem Fall Knoten 4) er nimmt die Werte null an.
- Für Leitung #4 (Nord-Süd-Verbindung zwischen Knoten 2 und 4) hat somit der Handel zwischen Knoten 2 und dem den Referenzknoten einen Wirkungsfaktor 0.639 (max.)
- Auch ein Handel zwischen Knoten 1 und Knoten 4 hat einen hohen Faktor von 0.518
- Es ergeben sich also hier potenzielle Smart Market Gebiete, z.B. an diesen Knoten, um den Engpass auf der Nord-Süd-Leitung zu reduzieren

Mehrstufige Modellierung (3)

Modellstufe 1: Investitionsentscheidung ins Stromnetz

- → Netzausbau wird von zentraler Stelle aus kostenoptimal geplant
- → Dazu: Antizipation von Spotmarkt Bedarf zum Engpassmanagement

Modellstufe 2: Zonaler Strommarkt mit Einheitspreis

- → Strommarkt liefert das Marktgleichgewicht
- → Marktgetriebene Investitionen in Erzeugung berücksichtigt

Modellstufe 3: Smart Market

- → Regionale Märkte (Marktparameter aus Prognose Engpässe und Redispatch)
- → Antizipation von Engpassmanagement im herkömmlichen Sinne

Modellstufe 4: Finales Engpassmanagement

- → Redispatch 2.0 von konventionellen und Erneuerbaren Anlagen
- → Beitrag von Smart Markets berücksichtigt

Smart Market Clearing: Engpassbedingte Energiebilanz

Der Smart Market kann als Kostenminimierungsproblem gelöst werden

$$\min C^{SM} = \sum_{t}^{T} \sum_{n}^{N} Y_{t,n}^{Ref} \cdot WTP^{Ref} + \sum_{t}^{T} \sum_{s}^{S} Y_{t,s}^{SM} \cdot MC_{s}$$

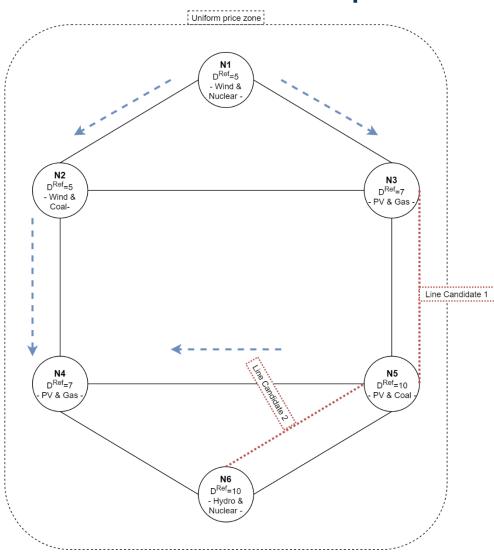
 Ein Engpass wird entweder über den Smart Market oder kostenbasierten Redispatch gelöst – so ist sichergestellt, dass kurzfristige Kosteneffizienz erreicht wird

$$f_{t,l}^{C} = \sum_{n}^{N} (X_{l,n} \cdot Y_{t,n}^{Ref} + X_{l,n} \cdot \sum_{s \in S^{n}}^{S} Y_{t,s}^{SM})$$

- Die Matrix $X_{l,n}$ gibt dazu eine Zuordnung mit PTDF-Wirkungsfaktoren von den für den Smart Market relevanten Knotenpunkten zur engpassbehafteten Leitung an
- Außerdem sind die üblichen Kapazitätsbeschränkungen für Smart Market Teilnehmer S relevant.
- Als Ergebnis kann pro Knoten eine Smart Market Lösung zusammengefasst werden. Die gelöste Menge $Y_{t,n}^{Ref}$ wird erst im Anschluss über kostenminimalen Redispatch gelöst

Ergebnisse (1)

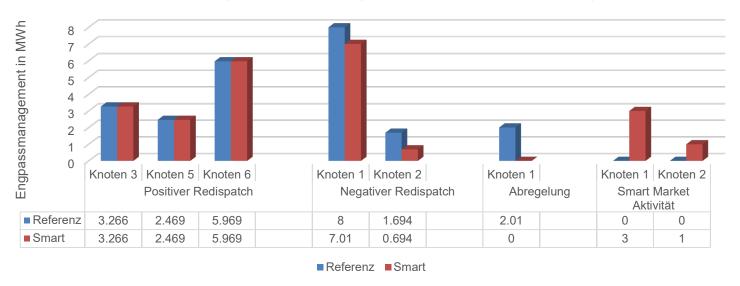
 Analysiert werden die Ergebnisse für einen potenziellen Smart Market an der engpassbehafteten Nord-Süd-Leitung 4


	1	2	3	5	6
_	Γ]
1	0.506	-0.120	0.133	0.072	0.048
2	0.494	0.120	-0.133	-0.072	-0.048
3	-0.012	0.241	-0.265	-0.145	-0.096
4	0.518	0.639	0.398	0.217	0.145
5	0.241	0.181	0.301	-0.108	-0.072
6	-0.289	-0.217	-0.361	-0.470	-0.313
7	-0.193	-0.145	-0.241	-0.313	-0.542
8	0.096	0.072	0.120	0.157	-0.229
9	0.241	0.181	0.301	-0.108	-0.072
10	0.096	0.072	0.120	0.157	-0.229

- Knoten 1 und 2 haben die höchsten Wirkungsfaktoren auf die Leitung und stellen damit das Smart Market Gebiet
- Jeder Knoten besitzt zusätzliche Flexibilität, die nicht über Redispatch 2.0 erfasst ist
- Als Zahlungsbereitschaft für eine Einheit Engpasslösung WTP^{Ref} wird der Durchschnitt aller Redispatchkosten innerhalb des zeitlichen Modellhorizonts herangezogen
- Sofern also eine lokale Flexibilität bereit ist unter dieser Zahlungsbereitschaft anzubieten, wird sie abgerufen und mit dem Wirkungsfaktor als nodale Engpasslösung eingebunden

Ein einfaches 6-Knoten-Beispiel

- Nord-Süd-Engpass wirkt sich auf Leitung 4 aus
- An Knoten 1 und 2 wird negativer Redispatch erwartet
- Auf südlichen Knoten wird positiver Redispatch erwartet
- Leitungskandidaten werden erwartungsgemäß gebaut



Ergebnisse (2)

 Analysiert werden die Ergebnisse für einen potenziellen Smart Market an der engpassbehafteten Nord-Süd-Leitung 4

- Der Smart Market kann die Menge an Engpassmanagement senken, in diesem Fall negativen Redispatch und Abregelung von erneuerbaren Anlagen
- Die Menge an Engpassmanagement bleibt insgesamt gleich, verschiebt sich jedoch
- Die Smart Market Lösung kann kurzfristig Kosten senken

Zusammenfassung und Ausblick

- Smart Markets können eine marktbasierte Ergänzung zum kostenbasierten Redispatch darstellen
- Einbindung sog. Smart Markets kann sowohl kurz- als auch mittelfristig positive Auswirkungen haben
 - Kurzfristige Senkung von Redispatch durch Schaffung von regionalen Märkten
 - Mittelfristige Bereitstellung von regionalen Anreizen für Investitionen in Flexibilität
 - Effizientere Engpassbewirtschaftung ermöglicht weniger Netzausbau
- Mehrere Varianten der Ausgestaltung möglich (siehe z.B. Formulierung der Teilnehmer oder Definition der Smart Market Parameter)
- Markt ermöglicht Teilnahme von kleineren Flexibilitätsanbietern, was individuelle Geschäftsmodelle fördert und Investitions- und Innovationsanreize schaffen kann
- Langfristig innerhalb der Diskussion zu effizienter Preiszonenkonfiguration und Einbepreisung von Netzrestriktionen angesiedelt

Quellen

- M. Ambrosius, J. Egerer, A. V. Grimm und A. van der Weijde (2020). The role of expectations for market design - on structural regulatory uncertainty in electricity markets. Cambridge Working Paper in Economics 1943.
- Bundesnetzagentur (2020). Monitoringbericht 2020. URL: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Berichte/2020/Monitoringbericht_Energie20 20.pdf;jsessionid=1609F0FE53FD317ADA94851E05A73BD9? blob=publicationFile&v=8.
- Ecofys und Fraunhofer IWES (2017). Smart-Market-Design in deutschen Verteilnetzen. Studie im Auftrag von Agora Energiewende, 2017. URL: https://www.agoraenergiewende.de/fileadmin/Projekte/2016/Smart_Markets/Agora_Smart-Market-Design_WEB.pdf.
- V. Grimm, A. Martin, M. Schmidt, M. Weibelzahl und G. Zöttl (2016). Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes. European Journal of Operational Research, Bd. 254. Nr. 2. pp. 493-509.
- V. Grimm, A. Martin, C. Sölch, M. Weibelzahl und G. Zöttl (2020). Market-based Redispatch May Result in Inefficient Dispatch. URL: http://dx.doi.org/10.2139/ssrn.3120403.

Lukas Maximilian Lang, M.Sc.

Chair of Economic Theory
Friedrich-Alexander-Universität
Erlangen-Nürnberg
Lange Gasse 20
90403 Nürnberg

Energie Campus Nürnberg
Forschungsbereich Energiemarktdesign
Fürther Straße 250
90429 Nürnberg

[I]: www.wirtschaftstheorie.wiso.uni-erlangen.de

[I]: www.encn.de

[E]: lukas.m.lang@fau.de

[T]: +49 (0)911 5302 168