

## Valorizing flexible bioenergy

Fabian Schipfer, Tilman Schildhauer, Elina Mäki, Daniela Thrän, Christiane Hennig, Uta Schmieder, Nora Lange, Cecilia Higa

08.09.2021 – IEWT 1st Online Conference

Parallelsession 4D: Flexibilität

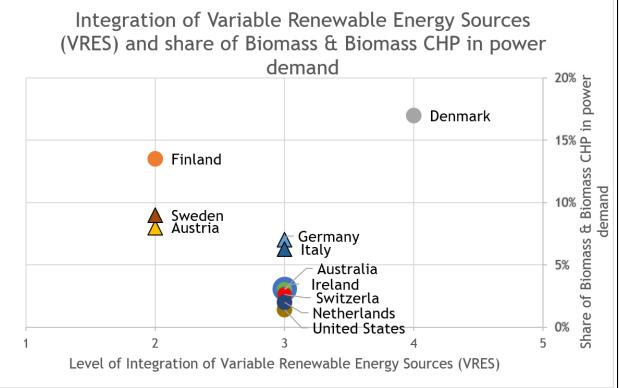


### Variable renewable electricity (VRE) production

#### IEA's "Six phases of system integration"

- Phase 1: No relevant impact on system integration
- Phase 2: Drawing on existing system flexibility
- Phase 3: Investing in flexibility
- Phase 4: Requiring adv. technologies to ensure reliability
- Phase 5: VRE surplus from days to weeks
- Phase 6: Seasonal or inter-annual surpluses of VRE

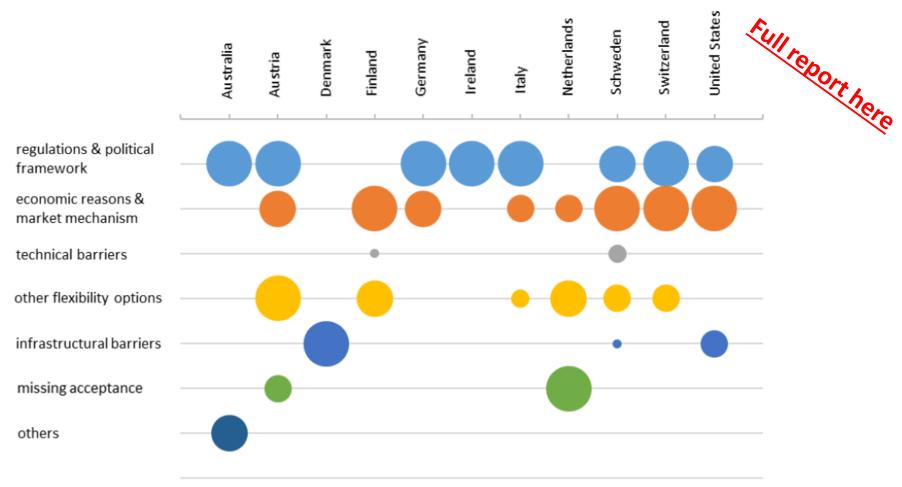
<u>Source: https://www.iea.org/</u>topics/system-integration-of-renewables




### Variable renewable electricity (VRE) production

#### IEA's "Six phases of system integration"

- Phase 1: No relevant impact on system integration
- Phase 2: Drawing on existing system flexibility
- Phase 3: Investing in flexibility
- Phase 4: Requiring adv. technologies to ensure reliability
- Phase 5: VRE surplus from days to weeks
- Phase 6: Seasonal or inter-annual surpluse


Source: https://www.iea.org/ topics/system-integration-of-renewables





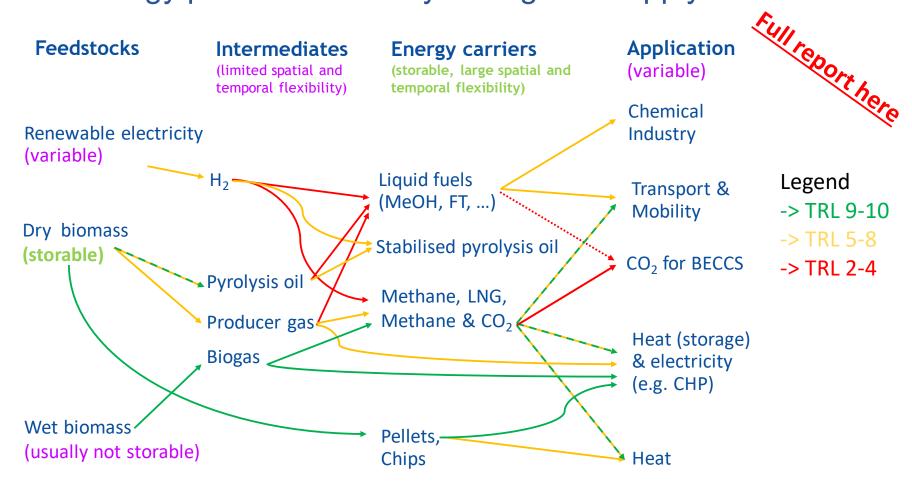


# Weighted barriers for the implementation of flexible bioenergy (country-specific)



The dot size reflects the priority within the mentioned barriers.

Country-specific presentation of the categorised barriers.


The larger the coloured circle, the more relevant the barrier is. The different colours represent the barrier categories Source: Thrän et al. 2021.

https://task44.ieabioenergy.com/wp-content/uploads/sites/12/2021/04/ IEA-Task-44-report-Expectation-and-implementation-of-flexible-bioenergy-in-different-countries.pdf



nergy conomics

### Bioenergy provides flexibility throughout supply chains



TRLs are estimated on the case studies and installations as well as R&D needs, experiences and expectations and business cases collected for the report.

https://task44.ieabioenergy.com/publications/technologies-for-flexible-bioenergy-2021/

### Hypothesis and research question

- 1. We will need all available sustainable flexibility options to enable further integration of VREs.
- 2. Technology options exist, with partly high TRLs but only in niche applications.
- 3. Regulatory and economic barriers are high for flexible bioenergy options
- 4. → understanding of potential benefits of flexible bioenergy must be low.
- 5. What are the potential benefits of flexible bioenergy and how can they be valorized?



### Some selected parameters & metrics:

| Power grid                                  |  |
|---------------------------------------------|--|
| Ramp-rate capacity                          |  |
| Provision capacity (power & energy)         |  |
| Ramp duration                               |  |
| Functions to describe frequency constraints |  |
| > for positive & negative power services    |  |

+ Economic parameters (cost, prices, supply & demand potentials), environmental and socio-economic parameters





### Some selected parameters & metrics:

| Feedstock → | Intermediary → | Power grid and/or                   | other services |
|-------------|----------------|-------------------------------------|----------------|
|             |                | Ramp-rate capacity                  |                |
|             |                | Provision capacity (power & energy) |                |
|             |                | Ramp duration                       |                |
| Riomass sui | oply chain!!   |                                     | Bioeconomy     |
| Diomass su  | opry criairi   | Functions to describe               | Dioceonomy     |
|             |                | frequency constraints               |                |
|             |                | > for positive &                    |                |
|             |                | negative power                      |                |
|             |                | services                            |                |

+ Economic parameters (cost, prices, supply & demand potentials), environmental and socio-economic parameters



### Some selected parameters & metrics:

| Feedstock →                   | Intermediary →          | Power grid and/or                           | Bioeconomy services         |
|-------------------------------|-------------------------|---------------------------------------------|-----------------------------|
| Seasonal occurrence           | Energy density          | Ramp-rate capacity                          | CHP-parameters              |
| Spatial availability          | Bio- stability          | Provision capacity (power & energy)         | Chemicals properties        |
| Residues' main product props. | Structural stability    | Ramp duration                               | Applicability for ind. heat |
| Ecosystem services impact     | Self-ignition risk      | Functions to describe frequency constraints | Applicability for BECCUS    |
| Quality fluctuations          | Existing infrastructure | > for positive & negative power services    | Nutrients                   |

+ Economic parameters (cost, prices, supply & demand potentials), environmental and socio-economic parameters



## Valorizing flexible bioenergy – in theory & in practice

| Feedstock                                                                                                    | Intermediary                                                                                                    | Power grid                                                                                          | Bioeconomy services                                                           |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| <ul> <li>Geospatial and seasonal maps on residues potentials</li> <li>Seasonal cost-supply curves</li> </ul> | <ul> <li>Commodity         markets</li> <li>Price signals         triggering storing         options</li> </ul> | <ul> <li>Transactive control (TC) schemes</li> <li>Rolling horizon predictive scheduling</li> </ul> | <ul> <li>Multi-carrier markets</li> <li>Exergo-economic evaluation</li> </ul> |

## ↑ in theory ↑



### Valorizing flexible bioenergy – in theory & in practice

| Feedstock | Intermediary | Power grid | Bioeconomy |
|-----------|--------------|------------|------------|
|           |              |            | services   |

## **↓** in practice **↓**

- Highly limited data on availability, costs/prices
- Only a view residues markets for selected feedstocks
- Immature commodity markets for a view densified energy carriers
- Storage not acknowledged

- Larger producer/consum ers
- Short-term flex services
- View pilots for smaller/decentral ized prosumers
- No long-term

- Almost no heat markets
- Same for biobased chemicals
- different qualities of carriers, processes and services

conomics

## Valorizing flexible bioenergy – in theory & in practice

| Feedstock                                                                                                                           | Intermediary                                                                                                                                                  | Power grid                                                                                                                                                       | Bioeconomy services                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Geospatial and seasonal maps on residues potentials</li> <li>Seasonal cost-supply curves</li> </ul>                        | <ul> <li>Commodity         markets</li> <li>Price signals         triggering storing         options</li> </ul>                                               | <ul> <li>Transactive control (TC) schemes</li> <li>Rolling horizon predictive scheduling</li> </ul>                                                              | <ul> <li>Multi-carrier<br/>markets</li> <li>Exergo-economic<br/>evaluation</li> </ul>                                                            |
| <ul> <li>Highly limited data on availability, costs/prices</li> <li>Only a view residues markets for selected feedstocks</li> </ul> | <ul> <li>Immature         commodity         markets for a         view densified         energy carriers</li> <li>Storage not         acknowledged</li> </ul> | <ul> <li>Larger producer/consum ers</li> <li>Short-term flex services</li> <li>View pilots for smaller/decentral ized prosumers</li> <li>No long-term</li> </ul> | <ul> <li>Almost no heat markets</li> <li>Same for biobased chemicals</li> <li>different qualities of carriers, processes and services</li> </ul> |

We will need all available sustainable flexibility options to enable further integration of VREs BUT regulatory and economic barriers are high for flexible bioenergy options



- We will need all available sustainable flexibility options to enable further integration of VREs BUT regulatory and economic barriers are high for flexible bioenergy options
- Bioenergy flexibilization potentials address different dimensions throughout their biomass supply chain – beyond intra-day grid balancing



- We will need all available sustainable flexibility options to enable further integration of VREs BUT regulatory and economic barriers are high for flexible bioenergy options
- Bioenergy flexibilization potentials address different dimensions throughout their biomass supply chain – beyond intra-day grid balancing
- In practice different markets & commodities & services all exhibiting different but in overall rather low maturity levels ← long way to go before flexible bioenergy options can unfold their full potential to support VREs



- We will need all available sustainable flexibility options to enable further integration of VREs BUT regulatory and economic barriers are high for flexible bioenergy options
- Bioenergy flexibilization potentials address different dimensions throughout their biomass supply chain – beyond intra-day grid balancing
- In practice different markets & commodities & services all exhibiting different but in overall rather low maturity levels ← long way to go before flexible bioenergy options can unfold their full potential to support VREs
- ▶ BUT (A) niche applications with high TRL exist and (B) as does the theoretical background for further integration into energy system models → quantify the added-value of flexible bioenergy!



## Flexible Bioenergy



Flexibility can be defined from different perspectives, such as from system, process or component level perspective.

Bioenergy and system integration covers multiple different dimensions of flexibility, including temporal and spatial flexibility, feedstock flexibility, operational flexibility, flexibility in the use of bioenergy and end-product flexibility. Task 44 has defined flexible bioenergy as following:

"Flexible bioenergy is defined as a bioenergy system than can provide multiple services and benefits to the energy system under varying operating conditions and/or loads.

### https://task44.ieabioenergy.com/flexible-bioenergy/

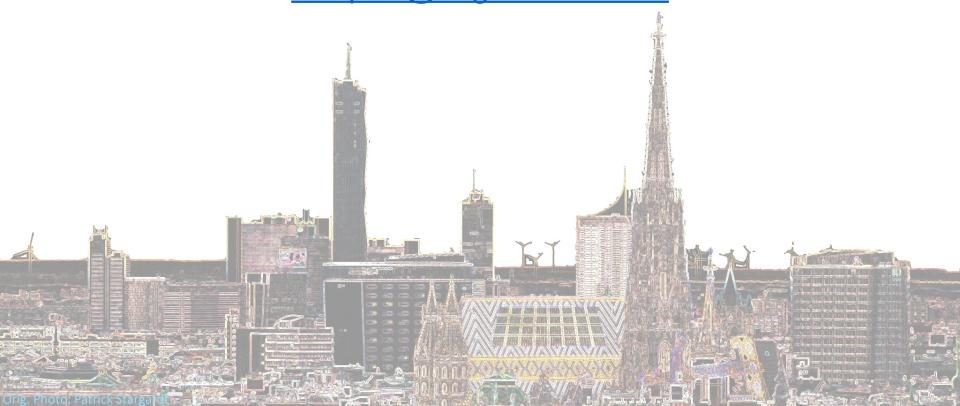
Schipfer, F., Kranzl, L., Olsson, O., Lamers, P., 2020.

The European wood pellets for heating market - Price developments, trade and market efficiency. Energy 212, 118636. https://doi.org/10.1016/j.energy.2020.118636

Schipfer, F., Kranzl, L., 2019. Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs). Applied Energy 239, 715–724.

https://doi.org/10.1016/j.apenergy.2019.01.219








## Thank you for your attention!

Fabian Schipfer

schipfer@eeg.tuwien.ac.at

